您的当前位置:首页正文

高一数学知识点总结汇总

2022-12-12 来源:我们爱旅游

  1、集合的概念

  集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。

  对象――即集合中的元素。集合是由它的元素确定的。

  整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。

  确定的――集合元素的确定性――元素与集合的“从属”关系。

  不同的――集合元素的互异性。

  2、有限集、无限集、空集的意义

  有限集和无限集是针对非空集合来说的。我们理解起来并不困难。

  我们把不含有任何元素的集合叫做空集,记做Φ。理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。

  几个常用数集N、N_N+、Z、Q、R要记牢。

  3、集合的表示方法

  (1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:

  ①元素不太多的有限集,如{0,1,8}

  ②元素较多但呈现一定的规律的有限集,如{1,2,3,…,100}

  ③呈现一定规律的无限集,如{1,2,3,…,n,…}

  ●注意a与{a}的区别

  ●注意用列举法表示集合时,集合元素的“无序性”。

  (2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。但关键点也是难点。学习时多加练习就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。

  4、集合之间的关系

  ●注意区分“从属”关系与“包含”关系

  “从属”关系是元素与集合之间的关系。

  “包含”关系是集合与集合之间的关系。掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用等符号,会用Venn图描述集合之间的关系是基本要求。

  ●注意辨清Φ与{Φ}两种关系。

因篇幅问题不能全部显示,请点此查看更多更全内容