公式:
x1=cos(angle)*x-sin(angle)*y;
y1=cos(angle)*y+sin(angle)*x;
其中x,y表示物体相对于旋转点旋转angle的角度之前的坐标,x1,y1表示物体旋转angle后相对于旋转点的坐标
从数学上来说,此公式可以用来计算某个点绕另外一点旋转一定角度后的坐标,例如:A(x,y)绕B(a,b)旋转β度后的位置为C(c,d),则x,y,a,b,β,c,d有如下关系式:
1。设A点旋转前的角度为δ,则旋转(逆时针)到C点后角度为δ+β
2。求A,B两点的距离:dist1=|AB|=y/sin(δ)=x/cos(δ)
3。求C,B两点的距离:dist2=|CB|=d/sin(δ+β)=c/cos(δ+β)
4。显然dist1=dist2,设dist1=r所以:
r=x/cos(δ)=y/sin(δ)=d/sin(δ+β)=c/cos(δ+β)
5。由三角函数两角和差公式知:
sin(δ+β)=sin(δ)cos(β)+cos(δ)sin(β)
cos(δ+β)=cos(δ)cos(β)-sin(δ)sin(β)
所以得出:
c=r*cos(δ+β)=r*cos(δ)cos(β)-r*sin(δ)sin(β)=xcos(β)-ysin(β)
d=r*sin(δ+β)=r*sin(δ)cos(β)+r*cos(δ)sin(β)=ycos(β)+xsin(β)
即旋转后的坐标c,d只与旋转前的坐标x,y及旋转的角度β有关
从图中可以很容易理解出A点旋转后的C点总是在圆周上运动,圆周的半径为|AB|,利用这点就可以使物体绕圆周运动,即旋转物体。
上面公式是相对于B点坐标来的,也就是假如B点位(0,0)可以这么做。现在给出可以适合任意情况的公式:
x0 = dx * cos(β) - dy * sin(β)
y0 = dy * cos(β) + dx * sin(β)
参数解释:
x0,y0是旋转后相对于中心点的坐标,也就是原点的坐标,但不是之前点旋转后的实际坐标,还要计算一步,
β旋转角度,可以是顺时针或者逆时针。
dx是旋转前的x坐标-旋转后的x坐标
dy是旋转前的y坐标-旋转后的y坐标
x1=a+x0;
y1=b+y0;
上面才是旋转后的实际坐标,其中a,b是原点坐标
下面是上面图的公式解答:
x0=(x-a)*cos(β)-(y-b)*sin(β);
y0=(y-b)*cos(β)+(x-a)*sin(β);
x1=x0+a;
y1=y0+b;
因篇幅问题不能全部显示,请点此查看更多更全内容