0n(1)limq1n不存在|q|1q1|q|1或q1.
0(kt)aknkak1nk1a0at(2)lim(kt).
nbntbnt1btt10bk不存在 (kt)(3)Slim2.几个常用极限
(1)lima11qn1qna1n1(S无穷等比数列a1q (|q|1)的和) 1q1110,liman0(|a|1);(2)limxx0,lim.
nxx0nnxx0xx0x3.两个重要的极限
sinx11;(1)lim(2)lim1e(e=2.718281845…).
x0xxx4.函数极限的四则运算法则
若limf(x)a,limg(x)b,则(1)limfxgxab;
xx0xx0xx0(2)limfxgxab;(3)limxx0xx0fxab0. gxb5.数列极限的四则运算法则
若limana,limbnb,则(1)limanbnab;
nnn(2)limanbnab;(3)limnanab0(4)limcanlimclimanca( c是常数).
nnnnbbn基本初等函数求导公式
(1) (3)
(C)0 (sinx)cosx
1(x)x (2)
(4)
(cosx)sinx
2(tanx)secx (5) 2(cotx)cscx (6)
(7)
(secx)secxtanx
(8)
(cscx)cscxcotx
xx(a)alna (9) xex(e) (10)
(11)
(logax)1xlna
(lnx) (12)
1x,
(arcsinx) (13)
11x2
11x2
(14)
(arccosx)11x2
11x2
(arctanx) (15)
(arccotx) (16)
函数的和、差、积、商的求导法则
设
uu(x),vv(x)都可导,则
(uv)uv (uv)uvuv
(Cu)Cu(C是常数)
(1) (2)
(3)
uvuvuv2 (4) v
反函数求导法则
若函数
x(y)I(y)0,则它的反函数yf(x)在对应区间Ix内也可导,且 在某区间y内可导、单调且
dy11dxdxf(x)dy (y) 或
复合函数求导法则 设
yf(u),而u(x)且f(u)及(x)都可导,则复合函数yf[(x)]的导数为
dydydu(x) dxdudx或yf(u)(tgx)sec2x(ctgx)csc2x(secx)secxtgx(cscx)cscxctgx(ax)axlna1(logax)xlna(arcsinx)11x21(arccosx)1x21(arctgx)1x21(arcctgx)1x2
拉格朗日中值定理:f(b)f(a)f()(ba)f(b)f(a)f()柯西中值定理:F(b)F(a)F()
当F(x)x时,柯西中值定理就是拉格朗日中值定理。
因篇幅问题不能全部显示,请点此查看更多更全内容