几何三大问题如果不限制作图工具,便很容易解决.从历史上看,好些数学结果是为解决三大问题而得出的副产品,特别是开创了对圆锥曲线的研究,发现了一批著名的曲线,等等.不仅如此,三大问题还和近代的方程论、群论等数学分支发生了关系.
正五边形的画法]
(1)已知边长作正五边形的近似画法如下:
①作线段AB等于定长l,并分别以A,B为圆心,已知长l为半径画弧与AB的中垂线交于K.
②以K为圆心,取AB的2/3长度为半径向外侧取C点,使CK=2/3AB.
③以 C为圆心,已知边长 AB为半径画弧,分别与前两弧相交于M,N.
④顺次连接A,B,N,C,M各点即近似作得所要求的正五边形.
(2) 圆内接正五边形的画法如下:
①以O为圆心,定长R为半径画圆,并作互相垂直的直径MN和 AP.
② 平分半径ON,得OK=KN.
③以 K为圆心,KA为半径画弧与 OM交于 H, AH即为正五边形的边长.
④以AH为弦长,在圆周上截得A,B,C,D,E各点,顺次连接这些点即得正五边形.
(3).民间口诀画正五边形
口诀介绍:\"九五顶五九,八五两边分.\"
作法:
画法:
1.画线段AB=20mm,
2.作线段AB的垂直平分线,垂足为G.
3.在l上连续截取GH,HD,使 GH=5.9/5*10mm=19mm,
HD=5.9/5*10mm=11.8mm
4.过H作EC⊥CG,在EC上截取HC=HE=8/5*10mm=16mm,
5.连结DE,EA,EC,BC,CD,
五边形ABCDE就是边长为20mm的近似正五边形.
(4)
1. 画一条水平线,通过此线上的任意点做一个圆。
2. 将圆规的一腿放在圆与直线的其一交点上,通过上述圆的圆心画半圆,并与之交两点。连接这两点做垂直线,与先前的水平线相交与(a)点.
3. 张开圆规,以水平线与第一个圆的两个交点为圆心以相同半径在水平线上下第一个圆外分别做两个交点,这样可以得到一条通过第一个圆圆心的正交线,与第一个圆相交的位于水平线上方的点称之为(b).这是正五边形的第一个角。
4. 将圆规的一脚放在(a)点上,(a)(b)间距为半径做另一个圆,交水平线于点(c)。
5. 将圆规的一脚放在(b)点上,(b)(c)间距为半径做圆,交第一个圆于两点,这是正五边形的第二、三两点。
6. 将圆规的一脚分别放在二、三两点上,同样是(b)(c)间距为半径交第一个圆于另外两点,这两点就是正五边形的最后两点。
7. 连接相邻两点就构成了正五边形。
如果不是连接相邻两点(即对角线连接),就会得到一个五角星,在它的中间构成一个小的正五边形。或者延长每一边,得到一个大正五边形。
正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.
人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.
17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如
Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.
费马的一个著名猜想是,当 n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:
F0=3,F1=5,F2=17,
F3=257,F4=65 537
验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:
F5=641×6 700 417.
当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?
更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.
当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.
更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是
n=2k(2的k次幂)或 2k×p1×p2×…×ps,(1,2…s为右下角标)
其中,p1,p2,…,ps是费马素数.
正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.
倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.
就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.
正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.
高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为 6= 2· 3而 3=F0.
备注一
一个正质数多边形可以用标尺作图的充分和必要条件是,该多边形的边数必定是一个费马质数。换句话说,只有正三边形、正五边形、正十七边形、正257边形和正63357
边形可以用尺规作出来,其它的正质数多边形就不可以了。(除非我们再发现另一个费马质数。)
备注二
黎西罗给出了正257边形的尺规作法,写满了整整80页纸。盖尔梅斯给出了正63357边形的尺规作法,此手稿整整装满了一只手提箱,现存于德国哥廷根大学。这是有史以来最繁琐的尺规作图。
备注三
正十七边形的尺规作图存在之证明:
设正17边形中心角为a,则17a=360度,即16a=360度-a
故sin16a=-sina,而
sin16a=2sin8acos8a=2sinacosacos2acos4acos8a
方sin4acos4acos8a=2的4次方
因sina不等于0,两边除之有:
16cosacos2acos4acos8a=-1
又由2cosacos2a=cosa+cos3a等,有
2(cosa+cos2a+…+cos8a)=-1
注意到 cos15a=cos2a,cos12a=cos5a,令
x=cosa+cos2a+cos4a+cos8a
y=cos3a+cos5a+cos6a+cos7a
有:
x+y=-1/2
又xy=(cosa+cos2a+cos4a+cos8a)(cos3a+cos5a+cos6a+cos7a)
=1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a)
经计算知xy=-1
又有
x=(-1+根号17)/4,y=(-1-根号17)/4
其次再设:
x1=cosa+cos4a,x2=cos2a+cos8a
y1=cos3a+cos5a,y2=cos6a+cos7a
故有x1+x2=(-1+根号17)/4
y1+y2=(-1-根号17)/4
解之可有:
(大家自己解解吧~~~~)
最后,由cosa+cos4a=x1,cosacos4a=(y1)/2
可求cosa之表达式,它是数的加减乘除平方根的组合,
故正17边形可用尺规作出。
详细准确的正17边形尺规作图方法
http://qzc.zgz.cn/X-chiguizuotu17.htm
步骤一:
给一圆O,作两垂直的直径OA、OB,
在OB上作C点使OC=1/4OB,
作D点使∠OCD=1/4∠OCA
作AO延长线上E点使得∠DCE=45度
步骤二:
作AE中点M,并以M为圆心作一圆过A点,
此圆交OB于F点,再以D为圆心,作一圆
过F点,此圆交直线OA于G4和G6两点。
步骤三:
过G4作OA垂直线交圆O于P4,
过G6作OA垂直线交圆O于P6,
则以圆O为基准圆,A为正十七边形之第一顶点,
P4为第四顶点,P6为第六顶点。
以1/2弧P4P6为半径,即可在此圆上截出正十七边形的所有顶点。
因篇幅问题不能全部显示,请点此查看更多更全内容