您的当前位置:首页正文

高考压轴题(5)——磁场

来源:我们爱旅游


高考压轴题(5)——磁场

一、安培力

1.图是导轨式电磁炮实验装置示意图。两根平行长直金属导轨沿水平方向固定,其间安放金属滑块(即实验用弹丸).滑块可沿导轨无摩擦滑行,且始终与导轨保持良好接触。电源提供的强大电流从一根导轨流入,经过滑块,再从另一导轨流回电源。滑块被导轨中的电流形成的磁场推动而发射。在发射过程中,该磁场在滑块所在位置始终可以简化为匀强磁场,方向垂直于纸面,其强度与电流的关系为B=kI,比例常

﹣6

量k=2.5×10T/A.已知两导轨内侧间距l=1.5cm,滑块的质量m=30g,滑块沿导轨滑行5m后获得的发射速度v=3.0km/s(此过程视为匀加速运动). (1)求发射过程中电源提供的电流强度。

(2)若电源输出的能量有4%转换为滑块的动能,则发射过程中电源的输出功率和输出电压各是多大? (3)若此滑块射出后随即以速度v沿水平方向击中放在水平面上的砂箱,它嵌入砂箱的深度为s′.设砂箱质量为M,滑块质量为m,不计砂箱与水平面之间的摩擦。求滑块对砂箱平均冲击力的表达式。

2.为了降低潜艇噪音,提高其前进速度,可用电磁推进器替代螺旋桨.潜艇下方有左、右两组推进器,每组由6个相同的、用绝缘材料制成的直线通道推进器构成,其原理示意图如下.在直线通道内充满电阻率ρ=0.2Ω∙m的海水,通道中a×b×c=0.3m×0.4m×0.3m的空间内,存在由超导线圈产生的匀强磁场,其磁感应强度B=6.4T、方向垂直通道侧面向外.磁场区域上、下方各有a×b=0.3m×0.4m的金属板M、N,

3

当其与推进器专用直流电源相连后,在两板之间的海水中产生了从N到M,大小恒为I=1.0×10A的电流,

33

设电流只存在于磁场区域.不计电源内阻及导线电阻,海水密度ρm=1.0×10kg/m. (1)求一个直线通道推进器内磁场对通电海水的作用力大小,并判断其方向; (2)在不改变潜艇结构的前提下,简述潜艇如何转弯?如何“倒车”?

(3)当潜艇以恒定速度v0=30m/s前进时,海水在出口处相对于推进器的速度v=34m/s,思考专用直流电源所提供的电功率如何分配,求出相应功率的大小.

1

二、带电粒子在匀强磁场中运动

3.如图(a)所示,左为某同学设想的粒子速度选择装置,由水平转轴及两个薄盘N1、N2构成,两盘面平行且与转轴垂直,相距为L,盘上各开一狭缝,两狭缝夹角θ可调(如图(b));右为水平放置的长为d的感光板,板的正上方有一匀强磁场,方向垂直纸面向外,磁感应强度为B.一小束速度不同、带正电的粒子沿水平方向射入N1,能通过N2的粒子经O点垂直进入磁场. O到感光板的距离为d/2,粒子电荷量为q,质量为m,不计重力.

(1)若两狭缝平行且盘静止(如图(c)),某一粒子进入磁场后,竖直向下打在感光板中心点M上,求该粒子在磁场中运动的时间t;

(2)若两狭缝夹角为θ0,盘匀速转动,转动方向如图(b).要使穿过N1、N2的粒子均打到感光板P1P2连线上.试分析盘转动角速度ω的取值范围(设通过N1的所有粒子在盘转一圈的时间内都能到达N2).

4.在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B.一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响). (1)如果粒子恰好从A点射出磁场,求入射粒子的速度.

(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图).求入射粒子的速度.

5.如图,纸面内有E、F、G三点,∠GEF=30°,∠EFG=135°.空间有一匀强磁场,磁感应强度大小为B,

2

方向垂直于纸面向外.先使带有电荷量为q(q>0)的点电荷a在纸面内垂直于EF从F点射出,其轨迹经过G点;再使带有同样电荷量的点电荷b在纸面内与EF成一定角度从E点射出,其轨迹也经过G点.两点电荷从射出到经过G点所用的时间相同,且经过G点时的速度方向也相同.已知点电荷a的质量为m,轨道半径为R,不计重力.求:

(1)点电荷a从射出到经过G点所用的时间; (2)点电荷b的速度大小.

6.如图,A、C两点分别位于x轴和y轴上,∠OCA=30°,OA的长度为L.在△OCA区域内有垂直于xOy平面向里的匀强磁场。质量为m、电荷量为q的带正电粒子,以平行于y轴的方向从OA边射入磁场。已知粒子从某点射入时,恰好垂直于OC边射出磁场,且粒子在磁场中运动的时间为t0.不计重力。 (1)求磁场的磁感应强度的大小;

(2)若粒子先后从两不同点以相同的速度射入磁场,恰好从OC边上的同一点射出磁场,求该粒子这两次在磁场中运动的时间之和;

(3)若粒子从某点射入磁场后,其运动轨迹与AC边相切,且在磁场内运动的时间为t0,求粒子此次入射速度的大小。

7.如图所示,在0≤x≤a、o≤y≤范围内有垂直手xy平面向外的匀强磁场,磁感应强度大小为B.坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~90°范围内。已知粒子在磁场中做圆周运动的半径介于a/2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。求最后离开磁场的粒子从粒子源射出时的

(1)速度的大小:

(2)速度方向与y轴正方向夹角的正弦。

3

8.如图所示,虚线OL与y轴的夹角为θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.一质量为m、电荷量为q(q>0)的粒子从左侧平行于x轴射入磁场,入射点为M.粒子在磁场中运动的轨道半径为R.粒子离开磁场后的运动轨迹与x轴交于P点(图中未画出),且=R.不计重力.求M点到O点的距离和粒子在磁场中运动的时间.

9.如图,ABCD是边长为a的正方形。质量为m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC边射入正方形区域。在正方形内适当区域中有匀强磁场。电子从BC边上的任意点入射,都只能从A点射出磁场。不计重力,求: (1)此匀强磁场区域中磁感应强度的方向和大小; (2)此匀强磁场区域的最小面积。

10.如图,在0≤x≤a区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内。已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上P(a,a)点离开磁场。求:

4

(1)粒子在磁场中做圆周运动的半径R及粒子的比荷;

(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围; (3)从粒子发射到全部粒子离开磁场所用的时间。

11.如图为装置的垂直截面图,虚线A1A2是垂直截面与磁场区边界面的交线,匀强磁场分布在A1A2的右侧区域,磁感应强度B=0.4T,方向垂直纸面向外,A1A2与垂直截面上的水平线夹角为45°.在A1A2左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为S1、S2,相距L=0.2m.在薄板上P处开一小孔,P与A1A2线上点D的水平距离为L.在小孔处装一个电子快门.起初快门开启,一旦有带正电微粒通过小孔,快门立即关闭,此后每隔T=3.0×10﹣3s开启一次并瞬间关闭.从S1S2之间的某一位置水平发射一速度为v0的带正电微粒,它经过磁场区域后入射到P处小孔.通过小孔的微粒与档板发生碰撞而反弹,反弹速度大小是碰前的0.5倍.

(1)通过一次反弹直接从小孔射出的微粒,其初速度v0应为多少? (2)求上述微粒从最初水平射入磁场到第二次离开磁场的时间.(忽略微粒所受重力影响,碰撞过程无电荷转移.已知微粒的荷质比

.只考虑纸面上带电微粒的运动)

12.如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x

5

轴的距离为,A的中点在y轴上,长度略小于.带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m,电荷量为q(q>0)的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.

6

三、带电粒子在组合场中运动

13.飞行时间质谱仪可以对气体分子进行分析.如图所示,在真空状态下,脉冲阀P喷出微量气体,经激光照射产生不同价位的正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的偏转控制区,到达探测器.已知元电荷电量为e,a、b板间距为d,极板M、N的长度和间距均为L.不计离子重力及进入a板时的初速度.

(1)当a、b间的电压为U1时,在M、N间加上适当的电压U2,使离子到达探测器.请导出离子的全部飞行时间与比荷K(K=

)的关系式.

(2)去掉偏转电压U2,在M、N间区域加上垂直于纸面的匀强磁场,磁感应强度为B,若进入a、b间的所有离子质量均为m,要使所有的离子均通过控制区从右侧飞出,a、b间的加速电压U1至少为多少?

14.如图,在x轴上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外;在x轴下方存在匀强电场,电场方向与xOy平面平行,且与x轴成45°夹角。一质量为m、电荷量为q(q>0)的粒子以速度v0从y轴上P点沿y轴正方向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过一段时间T0,磁场方向变为垂直纸面向里,大小不变,不计重力。

(1)求粒子从P点出发至第一次到达x轴时所需的时间; (2)若要使粒子能够回到P点,求电场强度的最大值。

7

15.如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直.一质量为m、电荷量为﹣q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场.粒子在磁场中的运动轨迹与y轴交于M点.已知OP=l,OQ=2l.不计重力.求: (1)M点与坐标原点O间的距离;

(2)粒子从P点运动到M点所用的时间.

16.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与 撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x轴正向入射.这时若只有磁场,粒子将做半径为R0的圆周运动:若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点.不计重力.求:

(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离; (2)M点的横坐标xM.

17.如图所示,在xOy平面的第一象限有一匀强电场,电场的方向平行于y轴向下;在x轴和第四象限的射线OC之间有一匀强磁场,磁感应强度的大小为B,方向垂直于纸面向外.有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场.质点到达x轴上A点时,速度方向与x轴的夹角为φ,A点与原点O的距离为d.接着,质点进入磁场,并垂直于OC飞离磁场.不计重力影响.若OC与x轴的夹角φ,求: (1)粒子在磁场中运动速度的大小;

8

(2)匀强电场的场强大小.

18.如图所示,直径分别为D和2D的同心圆处于同一竖直面内,O为圆心,GH为大圆的水平直径.两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d的两平行金属极板间有一匀强电场,上级板开有一小孔.一质量为m,电量为+q的粒子由小孔下方处静止释放,加速后粒子以竖直向上的速度v射出电场,由H点紧靠大圆内侧射入磁场.不计粒子的重力. (1)求极板间电场强度的大小;

(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为求这段时间粒子运动的路程.

,粒子运动一段时间后再次经过H点,

19.如图,一半径为R的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直。圆心O到直线的距离为

.现将磁

场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域。若磁感应强度大小为B,不计重力,求电场强度的大小。

9

20.如图所示,在坐标系xOy的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xOy平面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E.一带电量为+q、质量为m的粒子,自y轴的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限,随即撤去电场,以后仅保留磁场。已知OP=d,OQ=2d,不计粒子重力。 (1)求粒子过Q点时速度的大小和方向。

(2)若磁感应强度的大小为一定值B0,粒子将以垂直y轴的方向进入第二象限,求B0。 (3)若磁感应强度的大小为另一确定值,经过一段时间后粒子将再次经过Q点,且速度与第一次过Q点时相同,求该粒子相邻两次经过Q点所用的时间。

21.如图所示,在坐标系Oxy的第一象限中存在沿y轴正方向的匀强电场,场强大小为E.在其他象限中存在匀强磁场,磁场方向垂直纸面向里.A是y轴上的一点,它到坐标原点O的距离为h;C是x轴上的一点,到O的距离为l.一质量为m、电荷量为q的带负电的粒子以某一初速度沿x轴方向从A点进入电场区域,继而通过C点进入磁场区域,并再次通过A点,此时速度与y轴正方向成锐角.不计重力作用.试求:

(1)粒子经过C点时速度的大小和方向(用tanθ表示即可); (2)磁感应强度的大小B.

10

22.如图所示:正方形绝缘光滑水平台面WXYZ边长l=1.8m,距地面h=0.8m。平行板电容器的极板CD间距d=0.1m且垂直放置于台面,C板位于边界WX上,D板与边界WZ相交处有一小孔。电容器外的台面区域内有磁感应强度B=1T、方向竖直向上的匀强磁场。电荷量q=5×10﹣13

C的微粒静止于W处,在CD间加上恒定电压U=2.5V,板间微粒经电场加速后由D板所开小孔进入磁场(微粒始终不与极板接触),然后由XY边界离开台面。在微粒离开台面瞬时,静止于X正下方水平地面上A点的滑块获得一水平速度,在微粒落地时恰好与之相遇。假定微粒在真空中运动、极板间电场视为匀强电场,滑块视为质点,滑块与地面间的动摩擦因数μ=0.2,取g=10m/s2

(1)求微粒在极板间所受电场力的大小并说明两板的极性; (2)求由XY边界离开台面的微粒的质量范围;

(3)若微粒质量mo=1×10﹣13kg,求滑块开始运动时所获得的速度。

23.如图所示,足够大的平行挡板A1、A2竖直放置,间距6L.两板间存在两个方向相反的匀强磁场区域Ⅰ和Ⅱ,以水平面MN为理想分界面,Ⅰ区的磁感应强度为B0,方向垂直纸面向外.A1、A2上各有位置正对的小孔S1、S2,两孔与分界面MN的距离均为L.质量为m、电量为+q的粒子经宽度为d的匀强电场由静止加速后,沿水平方向从S1进入Ⅰ区,并直接偏转到MN上的P点,再进入Ⅱ区,P点与A1板的距离是L的k倍,不计重力,碰到挡板的粒子不予考虑. (1)若k=1,求匀强电场的电场强度E;

(2)若2<k<3,且粒子沿水平方向从S2射出,求出粒子在磁场中的速度大小v与k的关系式和Ⅱ区的磁感应强度B与k的关系式.

11

24.如图,离子源A产生的初速为零、带电量均为e、质量不同的正离子被电压为U0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM上的小孔S离开电场,经过一段匀速直线运动,垂直于边界MN进入磁感应强度为B的匀强磁场.已知HO=d,HS=2d,∠MNQ=90°.(忽略粒子所受重力)

(1)求偏转电场场强E0的大小以及HM与MN的夹角φ; (2)求质量为m的离子在磁场中做圆周运动的半径;

(3)若质量为4m的离子垂直打在NQ的中点S1处,质量为16m的离子打在S2处.求S1和S2之间的距离以及能打在NQ上的正离子的质量范围.

25.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴向右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).

已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场.上述m、q、l、t0、B为已知量.(不考虑粒子间相互影响及返回板间的情况)

12

(1)求电压U的大小.

(2)求t0时进入两板间的带电粒子在磁场中做圆周运动的半径.

(3)何时刻进入两极板的带电粒子在磁场中的运动时间最短?求此最短时间.

26.如图所示,在坐标系xOy中,过原点的直线OC与x轴正向的夹角φ=120°,在OC右侧有一匀强电场,在第二、三象限内有一匀强磁场,其上边界与电场边界重叠,右边界为y轴,左边界为图中平行于y轴的虚线,磁场的磁感应强度大小为B,方向垂直于纸面向里.一带正电荷q、质量为m的粒子以某一速度自磁场左边界上的A点射入磁场区域,并从O点射出,粒子射出磁场的速度方向与x轴的夹角θ=30°,大小为v,粒子在磁场内的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的2倍,粒子进入电场后,在电场力的作用下又由O点返回磁场区域,经过一段时间后再次离开磁场.已知粒子从A点射入到第二次离开磁场所用时间恰好等于粒子在磁场中做圆周运动的周期.忽略重力的影响.求: (1)粒子经过A点时的速度方向和A点到x轴的距离; (2)匀强电场的大小和方向;

(3)粒子从第二次离开磁场到再次进入电场所用的时间.

27.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d,

13

两侧为相同的匀强磁场,方向垂直纸面向里。一质量为m、带电量+q、重力不计的带电粒子,以初速度v1垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动。已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推。求 (1)粒子第一次经过电场的过程中电场力所做的功W1。 (2)粒子第n次经过电场时电场强度的大小En。 (3)粒子第n次经过电场所用的时间tn。

(4)假设粒子在磁场中运动时,电场区域场强为零。请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值)。

28.两块足够大的平行金属板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向).在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力).若电场强度E0、磁感应强度

B0、粒子的比荷

q/m

均已知,且

,两板间距

(1)求粒子在0~t0时间内的位移大小与极板间距h的比值. (2)求粒子在两极板间做圆周运动的最大半径(用h表示).

(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒

14

子在板间运动的轨迹图(不必写计算过程).

29.如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U0,周期为T0.在t=0时刻将一个质量为m电量为﹣q(q>0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在

刻通过S2垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场) (1)求粒子到达S2时的速度大小v和极板间距d;

(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。

(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小。

30.某仪器用电场和磁场来控制电子在材料表面上方的运动。如图所示,材料表面上方矩形区域PP'N'N充满竖直向下的匀强电场,宽为d;矩形区域NN′M′M充满垂直纸面向里的匀强磁场,磁感应强度为B,长为3s,宽为s;NN'为磁场与电场之间的薄隔离层。一个电荷量为e、质量为m、初速为零的电子,从P点开始被电场加速经隔离层垂直进入磁场,电子每次穿越隔离层,运动方向不变,其动能损失是每次穿越前动能的10%,最后电子仅能从磁场边界M'N'飞出。不计电子所受重力。

(1)求电子第二次与第一次圆周运动半径之比; (2)求电场强度的取值范围;

(3)A是M′N′的中点,若要使电子在A、M′间垂直于AM′飞出,求电子在磁场区域中运动的时间。

15

31.在科学研究中,可以通过施加适当的电场和磁场来实现对带电粒子运动的控制。如图1所示的xOy平面处于匀强电场和匀强磁场中,电场强度E和磁感应强度B随时间t作周期性变化的图象如图2所示。x轴正方向为E的正方向,垂直纸面向里为B的正方向。在坐标原点O有一粒子P,其质量和电荷量分别为m和+q.不计重力。在t=τ/2时刻释放P,它恰能沿一定轨道做往复运动。

(1)求P在磁场中运动时速度的大小v0; (2)求B0应满足的关系;

(3)在t0(0<t0<τ/2)时刻释放P,求P速度为零时的坐标。

32.在光滑绝缘的水平桌面上,有两个质量均为m,电量为+q的完全相同的带电粒子P1和P2,在小孔A处

以初速度为零先后释放.在平行板间距为d的匀强电场中加速后,P1从C处对着圆心进入半径为R的固定圆筒中(筒壁上的小孔C只能容一个粒子通过),圆筒内有垂直水平面向上的磁感应强度为B的匀强磁场.P1每次与筒壁发生碰撞均无电荷迁移,P1进入磁场第一次与筒壁碰撞点为D,∠COD=θ,如图所示.延后释放的P2,将第一次欲逃逸出圆筒的P1正碰圆筒内,此次碰撞刚结束,立即改变平行板间的电压,并利用P2与P1之后的碰撞,将P1限制在圆筒内运动.碰撞过程均无机械能损失.设邻两次碰撞时间间隔内,粒子P1与筒壁的可能碰撞次数. 附:部分三角函数值 φ tanφ 3.08 1.73 1.00 0.73 0.58 0.48 0.41 0.36 0.32 ,求:在P2和P1相

16

33.两屏幕荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示.在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B.在O点出有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为

,其中T为该粒子在磁感应强度为B的匀强磁场中

做圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).

34.如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向均垂直于纸面向里,且B1>B2.一个带负电荷的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件.

17

35.在一个放射源水平放射出α、β、γ和三种射线,垂直射入如图所示磁场.区域Ⅰ和Ⅱ的宽度均为d,各自存在着垂直纸面的匀强磁场,两区域的磁感强度大小B相等,方向相反(粒子运动不考虑相对论效应). (1)若要筛选出速率大于v1的β粒子进入区域Ⅱ,要磁场宽度d与B和v1的关系. (2)若B=0.0034T,v1=0.1c(c是光速度),则可得d;α粒子的速率为0.001c,计算α和γ射线离开区域Ⅰ时的距离;并给出去除α和γ射线的方法.

(3)当d满足第(1)小题所给关系时,请给出速率在v1<v<v2区间的β粒子离开区域Ⅱ时的位置和方向.

(4)请设计一种方案,能使离开区域Ⅱ的β粒子束在右侧聚焦且水平出射. 已知:电子质量me=9.1×10(x≤1时).

﹣31

kg,α粒子质量mα=6.7×10

﹣27

kg,电子电荷量q=1.6×10

﹣19

C,

36.如图,在区域Ⅰ(0≤x≤d)和区域Ⅱ(d<x≤2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。一质量为m、带电荷量q(q>0)的粒子a于某时刻从y轴上的P点射入区域Ⅰ,其速度方向沿x轴正向。已知a在离开区域Ⅰ时,速度方向与x轴正向的夹角为30°;此时,另一质量和电荷量均与a相同的粒子b也从P点沿x轴正向射入区域Ⅰ,其速度大小是a的,不计重力和两粒子之间的相互作用力,求: (1)粒子a射入区域Ⅰ时速度的大小;

(2)当a离开区域Ⅱ时,a、b两粒子的y坐标之差。

18

37.图(a)所示的xoy平面处于匀强磁场中,磁场方向与xoy平面(纸面)垂直,磁感应强度B随时间t变化的周期为T,变化图线如图(b)所示.当B为+B0时,磁感应强度方向指向纸外.在坐标原点O有一带正电的粒子P,其电荷量与质量恰好等于

.不计重力.设P在某时刻t0以某一初速度沿y轴正向O

点开始运动,将它经过时间T到达的点记为A. (1)若t0=0,则直线OA与x轴的夹角是多少? (2)若t0=T/4,则直线OA与x轴的夹角是多少?

(3)为了使直线OA与x轴的夹角为π/4,在0<t0<π/4的范围内,t0应取何值?

38.如图甲所示,间距为d,垂直于纸面的两平行板P,Q间存在匀强磁场,取垂直于纸面向里为磁场的正方向,磁感应强度随时间的变化规律如图乙所示,t=0时刻,一质量为m,带电量为+q的粒子(不计重力),以初速度v0,由Q板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区,当B0和TB取某些特定值时,可使t=0时刻入射的粒子经△t时间恰能垂直打在P板上(不考虑粒子反弹),上述m、q、d、v0为已知量。

(1)若△t=TB,求B0;

(2)若△t=TB,求粒子在磁场中运动时加速度的大小; (3)若B0=

19

,为使粒子仍能垂直打在P板上,求TB。

39.如图所示,在无限长的竖直边界NS和MT间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM平面向外和向内的匀强磁场,磁感应强度大小分别为B和2B,KL为上下磁场的水平分界线,在NS和MT边界上,距KL高h处分别有P、Q两点,NS和MT间距为1.8h,质量为m。带电量为+q的粒子从P点垂直于NS边界射入该区域,在两边界之间做匀速圆周运动,重力加速度为g。 (1)求电场强度的大小和方向。

(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值。

(3)若粒子经过Q点从MT边界飞出,求粒子入射速度的所有可能值。

40.现代科学仪器常利用电场、磁场控制带电粒子的运动,真空中存在着如图所示的多层紧密相邻的匀强电场和匀强磁场,电场与磁场的宽度均为d,电场强度为E,方向水平向右;磁感应强度为B,方向垂直纸面向里。电场、磁场的边界互相平行且与电场方向垂直。一个质量为m、电荷量为q的带正电粒子在第1层电场左侧边界某处由静止释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射。

(1)求粒子在第2层磁场中运动时速度v2的大小与轨迹半径r2; (2)粒子从第n层磁场右侧边界穿出时,速度的方向与水平方向的夹角为θn,试求sinθn; (3)若粒子恰好不能从第n层磁场右侧边界穿出,试问在其他条件不变的情况下,也进入第n层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之。

20

四、带电粒子在复合场中的运动

41.图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强

﹣3

度大小B=2.0×10T,在x轴上距坐标原点L=0.50m的P处为离子的入射口,在y上安放接收器.现将一

4

带正电荷的粒子以v=3.5×10m/s的速率从P处射入磁场,若粒子在y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不计其重力. (1)求上述粒子的比荷;

(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;

(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形.

42.如图所示,竖直平面(纸面)内有直角坐标系xOy,x轴沿水平方向。在x≤O的区域内存在方向垂直于纸面向里,磁感应强度大小为B1的匀强磁场。在第二象限紧贴y轴固定放置长为l、表面粗糙的不带电绝缘平板,平板平行于x轴且与x轴相距h。在第一象限内的某区域存在方向相互垂直的匀强磁场(磁感应强度大小为B2、方向垂直于纸面向外)和匀强电场(图中未画出)。一质量为m、不带电的小球Q从平板下侧A点沿x轴正向抛出;另一质量也为m、带电量为q的小球P从A点紧贴平板沿x轴正向运动,变为匀速运动后从y轴上的D点进入电磁场区域做匀速圆周运动,经圆周离开电磁场区域,沿y轴负方向运动,然后从x轴上的K点进入第四象限。小球P、Q相遇在第四象限的某一点,且竖直方向速度相同。设运动过程中小球P电量不变,小球P和Q始终在纸面内运动且均看作质点,重力加速度为g。求:

(1)匀强电场的场强大小,并判断P球所带电荷的正负; (2)小球Q的抛出速度v0的取值范围; (3)B1是B2的多少倍?

21

43.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁感应强度大小为B0,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。不计重力。

(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量。 (2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为

.求离子乙的质

量。

(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。

44.如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.

(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.

(2)请指出这束带电微粒与x轴相交的区域,并说明理由.

(3)在这束带电磁微粒初速度变为2V,那么它们与x轴相交的区域又在哪里?并说明理由.

45.边缘效应。p板上表面光滑,涂有绝缘层,其上O点右侧相距h处有小孔K;b板上有小孔T,且O、T在同一条竖直直线上,图示平面为竖直平面。质量为m,电荷量为﹣q(q>0)的静止粒子被发射装置(图中未画出)从O点发射,沿p板上表面运动时间t后到达K孔,不与其碰撞地进入两板之间。粒子视为质

22

点,在图示平面内运动,电荷量保持不变,不计空气阻力,重力加速度大小为g。 (1)求发射装置对粒子做的功;

(2)电路中的直流电源内阻为r,开关S接“1”位置时,进入板间的粒子落在b板上的A点,A点与过K孔竖直线的距离为L.此后将开关S接“2”位置,求阻值为R的电阻中的电流强度;

(3)若选用恰当直流电源,电路中开关S接“1”位置,使进入板间的粒子受力平衡,此时在板间某区域加上方向垂直于图面的、磁感应强度大小合适的匀强磁场(磁感应强度B只能在0~Bm=

范围

内选取),使粒子恰好从b板的T孔飞出,求粒子飞出时速度方向与b板板面的夹角的所有可能值(可用反三角函数表示)。

46.如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场。图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l的相同平行金属板构成,极板长度为l、间距为d,两对极板间偏转电压大小相等、电场方向相反。质量为m、电荷量为+q的粒子经加速电压U0加速后,水平射入偏转电压为U1的平移器,最终从A点水平射入待测区域。不考虑粒子受到的重力。 (1)求粒子射出平移器时的速度大小v1;

(2)当加速电压变为4U0时,欲使粒子仍从A点射入待测区域,求此时的偏转电压U;

(3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F.现取水平向右为x轴正方向,建立如图所示的直角坐标系Oxyz.保持加速电压为U0不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示。 射入方向 受力大小 y F ﹣y F z F ﹣z F 请推测该区域中电场强度和磁感应强度的大小及可能的方向。

47.在场强为B的水平匀强磁场中,一质量为m、带正电q的小球在O静止释放,小球的运动曲线如图所示。已知此曲线在最低点的曲率半径为该点到z轴距离的2倍,重力加速度为g.求: (1)小球运动到任意位置P(x,y)的速率v。

23

(2)小球在运动过程中第一次下降的最大距离ym。

(3)当在上述磁场中加一竖直向上场强为E(E>mg/q)的匀强电场时,小球从O静止释放后获得的最大速率vm。

48.如图甲,空间存在﹣范围足够大的垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.让质量为m,电量为q(q>0)的粒子从坐标原点O沿xOy平面以不同的初速度大小和方向入射到该磁场中。不计重力和粒子间的影响。

(1)若粒子以初速度v1沿y轴正向入射,恰好能经过x轴上的A(a,0)点,求v1的大小; (2)已知一粒子的初速度大小为v(v>v1),为使该粒子能经过A(a,0)点,其入射角θ(粒子初速度与x轴正向的夹角)有几个?并求出对应的sinθ值;

(3)如图乙,若在此空间再加入沿y轴正向、大小为E的匀强电场,一粒子从O点以初速度v0沿y轴正向发射。研究表明:粒子在xOy平面内做周期性运动,且在任一时刻,粒子速度的x分量vx与其所在位置的y坐标成正比,比例系数与场强大小E无关。求该粒子运动过程中的最大速度值vm。

49.如图甲,在x>0的空间中存在沿y轴负方向的匀强电场和垂直于xOy平面向里的匀强磁场,电场强度大小为E,磁感应强度大小为B.一质量为m,带电量为q(q>0)的粒子从坐标原点O处,以初速度v0沿x轴正方向射入,粒子的运动轨迹见图甲,不计粒子的重力。 (1)求该粒子运动到y=h时的速度大小v;

(2)现只改变入射粒子初速度的大小,发现初速度大小不同的粒子虽然运动轨迹(y﹣x曲线)不同,但具有相同的空间周期性,如图乙所示;同时,这些粒子在y轴方向上的运动(y

24

﹣t关系)是简谐运动,且都有相同的周期。

Ⅰ.求粒子在一个周期T内,沿x轴方向前进的距离S;

Ⅱ.当入射粒子的初速度大小为v0时,其y﹣t图象如图丙所示,求该粒子在y轴方向上做简谐运动的振幅A,并写出y﹣t的函数表达式。

50.如图,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B.一质量为m,电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C点时离开MN做曲线运动。A、C两点间距离为h,重力加速度为g。 (1)求小滑块运动到C点时的速度大小vc;

(2)求小滑块从A点运动到C点过程中克服摩擦力做的功Wf;

(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点。已知小滑块在D点时的速度大小为vD,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小vp。

51.如图所示,图面内有竖直线DD′,过DD′且垂直于图面的平面将空间分成Ⅰ、Ⅱ两区域.区域I有方向竖直向上的匀强电场和方向垂直图面的匀强磁场B(图中未画出);区域Ⅱ有固定在水平面上高h=2l、倾角α=

的光滑绝缘斜面,斜面顶端与直线DD′距离s=4l,区域Ⅱ

可加竖直方向的大小不同的匀强电场(图中未画出);C点在DD′上,距地面高H=3l.零时

25

刻,质量为m、带电荷量为q的小球P在K点具有大小v0=速度,在区域I内做半径r=

、方向与水平面夹角θ=的

的匀速圆周运动,经C点水平进入区域Ⅱ.某时刻,不带电的

绝缘小球A由斜面顶端静止释放,在某处与刚运动到斜面的小球P相遇.小球视为质点,不计空气阻力及小球P所带电量对空间电磁场的影响.l已知,g为重力加速度. (1)求匀强磁场的磁感应强度B的大小;

(2)若小球A、P在斜面底端相遇,求释放小球A的时刻tA; (3)若小球A、P在时刻t=β

(β为常数)相遇于斜面某处,求此情况下区域Ⅱ的匀强

电场的场强E,并讨论场强E的极大值和极小值及相应的方向.

五、电磁场在科技上的应用

52

对铀235的进一步研究在核能的开发和利用中具有重要意义。如图所示,质量为m、电荷量为q

的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动。离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I.不考虑离子重力及离子间的相互作用。 (1)求加速电场的电压U;

(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;

(3)实际上加速电压的大小会在U±△U范围内微小变化。若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,

应小于多少?(结果用百分数表示,保留两位有效数字)

26

53.一台质谱仪的工作原理如图所示,电荷量均为+q、质量不同的离子飘入电压为U0的加速电场,其初速度几乎为零,这些离子经加速后通过狭缝O沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场,最后打在底片上,已知放置底片的区域MN=L,且OM=L.某次测量发现MN中左侧区域MQ损坏,检测不到离子,但右侧区域QN仍能正常检测到离子,在适当调节加速电压后,原本打在MQ的离子即可在QN检测到. (1)求原本打在MN中点P的离子质量m;

(2)为使原本打在P的离子能打在QN区域,求加速电压U的调节范围; (3)为了在QN区域将原本打在MQ区域的所有离子检测完整,求需要调节U的最少次数.(取lg2=0.301,lg3=0.477,lg5=0.699)

54如图为一种质谱仪工作原理示意图.在以O为圆心,OH为对称轴,夹角为2α

的扇形区域内分布着方

向垂直于纸面的匀强磁场.对称于OH轴的C和D分别是离子发射点和收集点.CM垂直磁场左边界于M,且OM=d.现有一正离子束以小发散角(纸面内)从C射出,这些离子在CM方向上的分速度均为v0.若该离子束中比荷为的离子都能汇聚到D,试求:

(1)磁感应强度的大小和方向(提示:可考虑沿CM方向运动的离子为研究对象); (2)离子沿与CM成θ角的直线CN进入磁场,其轨道半径和在磁场中的运动时间; (3)线段CM的长度.

27

55.质谱分析技术已广泛应用于各前沿科学领域.汤姆孙发现电子的质谱装置示意如图,M、N为两块水平放置的平行金属极板,板长为L,板右端到屏的距离为D,且D远大于L,O′O为垂直于屏的中心轴线,不计离子重力和离子在板间偏离O′O的距离.以屏中心O为原点建立xOy直角坐标系,其中x轴沿水平方向,y轴沿竖直方向.

(1)设一个质量为m0、电荷量为q0的正离子以速度v0沿O′O的方向从O′点射入,板间不加电场和磁场时,离子打在屏上O点.若在两极板间加一沿+y方向场强为E的匀强电场,求离子射到屏上时偏离O点的距离y0;

(2)假设你利用该装置探究未知离子,试依照以下实验结果计算未知离子的质量数.

上述装置中,保留原电场,再在板间加沿﹣y方向的匀强磁场.现有电荷量相同的两种正离子组成的离子流,仍从O′点沿O′O方向射入,屏上出现两条亮线.在两线上取y坐标相同的两个光点,对应的x坐标分别为3.24mm和3.00mm,其中x坐标大的光点是碳12离子击中屏产生的,另一光点是未知离子产生的.尽管入射离子速度不完全相等,但入射速度都很大,且在板间运动时O′O方向的分速度总是远大于x方向和y方向的分速度.

56.正电子发射计算机断层(PET)是分子水平上的人体功能显像的国际领先技术,它为临床诊断和治疗提供全新的手段。

(1)PET在心脏疾病诊疗中,需要使用放射正电子的同位素氮13示踪剂。氮13是由小型回旋加速器输出的高速质子轰击氧16获得的,反应中同时还产生另一个粒子,试写出该核反应方程。

(2)PET所用回旋加速器示意如图,其中置于高真空中的金属D形盒的半径为R,两盒间距为d,在左侧D形盒圆心处放有粒子源S,匀强磁场的磁感应强度为B,方向如图所示。质子质量为m,电荷量为q。设质子从粒子源S进入加速电场时的初速度不计,质子在加速器中运动的总时间为t(其中已略去了质子在加速电场中的运动时间),质子在电场中的加速次数于回旋半周的次数相同,加速质子时的电压大小可视为不变。求此加速器所需的高频电源频率f和加速电压U。

(3)试推证当R>>d时,质子在电场中加速的总时间相对于在D形盒中回旋的时间可忽略不计(质子在电场中运动时,不考虑磁场的影响)。

28

57.回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展。

(1)当今医学成像诊断设备PET/CT堪称“现代医学高科技之冠”,它在医疗诊断中,常利用能放射电子的同位素碳11为示踪原子,碳11是由小型回旋加速器输出的高速质子轰击氮14获得,同时还产生另一粒子,试写出核反应方程。若碳11的半衰期τ为20min,经2.0h剩余碳11的质量占原来的百分之几?(结果取2位有效数字)

(2)回旋加速器的原理如图,D1和D2是两个中空的半径为R的半圆金属盒,它们接在电压一定、频率为f的交流电源上,位于D1圆心处的质子源A能不断产生质子(初速度可以忽略,重力不计),它们在两盒之间被电场加速,D1、D2置于与盒面垂直的磁感应强度为B的匀强磁场中。若质子束从回旋加速器输出时的平均功率为P,求输出时质子束的等效电流I与P、B、R、f的关系式(忽略质子在电场中运动的时间,其最大速度远小于光速)

(3)试推理说明:质子在回旋加速器中运动时,随轨道半径r的增大,同一盒中相邻轨道的半径之差△r是增大、减小还是不变?

58.回旋加速器的工作原理如图1所示,置于真空中的D形金属盒半径为R,两盒间狭缝的间距为d,磁感应强度为B的匀强磁场与盒面垂直,被加速粒子的质量为m,电荷量为+q,加在狭缝间的交变电压如图2所示,电压值的大小为Ub.周期T=

.一束该粒子在t=0﹣时

间内从A处均匀地飘入狭缝,其初速度视为零。现考虑粒子在狭缝中的运动时间,假设能够出射的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用。求: (1)出射粒子的动能Em;

(2)粒子从飘入狭缝至动能达到Em所需的总时间t总;

(3)要使飘入狭缝的粒子中有超过99%能射出,d应满足的条件。

29

59.使用回旋加速器的实验需要把离子束从加速器中引出,离子束引出的方法有磁屏蔽通道法和静电偏转法等,质量为m,速度为v的离子在回旋加速器内旋转,旋转轨道是半径为r的圆,圆心在O点,轨道在垂直纸面向外的匀强磁场中,磁感应强度为B,为引出离子束,使用磁屏蔽通道法设计引出器,引出器原理如图所示,一对圆弧形金属板组成弧形引出通道,通道的圆心位于O′点(O′点图中未画出),引出离子时,令引出通道内磁场的磁感应强度降低,从而使离子从P点进入通道,沿通道中心线从Q点射出,已知OQ长度为L,OQ与OP的夹角为θ

(1)求离子的电荷量q并判断其正负;

(2)离子从P点进入,Q点射出,通道内匀强磁场的磁感应强度应降为B′,求B′

(3)换用静电偏转法引出离子束,维持通道内的原有磁感应强度B不变,在内外金属板间加直流电压,两板间产生径向电场,忽略边缘效应,为使离子仍从P点进入,Q点射出,求通道内引出轨迹处电场强度E的方向和大小。

60.同步加速器在粒子物理研究中有重要的作用,其基本原理简化为如图1所示的模型.M、N为两块中心开有小孔的平行金属板,质量为m、电荷量为+q的粒子A(不计重力)从M板小孔飘入板间,初速度可视为零.每当A进入板间,两板的电势差变为U,粒子得到加速,当A离开N板时,两板的电荷量均立即变为零,两板外部存在垂直纸面向里的匀强磁场,A在磁场作用下做半径为R的圆周运动,R远大于板间距离,A经电场多次加速,动能不断增大,为使R保持不变,磁场必须相应的变化,不计粒子加速时间及其做圆周运动产生的电磁辐射,不考虑磁场变化对粒子速度的影响及相对论效应,求

30

(1)A运动第1周时磁场的磁感应强度B1的大小; (2)在A运动第n周的时间内电场力做功的平均功率

(3)若有一个质量也为m、电荷量为+kq(k为大于1的整数)的粒子B(不计重力)与A同时从M板小孔飘入板间,A、B初速度均可视为零,不计两者间的相互作用,除此之外,其他条件均不变,图2中虚线、实线分别表示A、B的运动轨迹,在B的轨迹半径远大于板间距离的前提下,请指出哪个图能定性地反映A、B的运动轨迹,并经推导说明理由.

61.为了进一步提高回旋加速器的能量,科学家建造了“扇形聚焦回旋加速器”.在扇形聚焦过程中,离子能以不变的速率在闭合平衡轨道上周期性旋转.扇形聚焦磁场分布的简化图如图所示,圆心为O的圆形区域等分成六个扇形区域,其中三个为峰区,三个为谷区,峰区和谷区相间分布.峰区内存在方向垂直纸面向里的匀强磁场,磁感应强度为B,谷区内没有磁场.质量为m,电荷量为q的正离子,以不变的速率v旋转,其闭合平衡轨道如图中虚线所示.

(1)求闭合平衡轨道在峰区内圆弧的半径r,并判断离子旋转的方向是顺时针还是逆时针; (2)求轨道在一个峰区内圆弧的圆心角θ,及离子绕闭合平衡轨道旋转的周期T;

(3)在谷区也施加垂直纸面向里的匀强磁场,磁感应强度为B′,新的闭合平衡轨道在一个峰区内的圆心角θ变为90°,求B′和B的关系.已知:sin(α±β )=sinαcosβ±cosαsinβ,cosα=1﹣2sin2

62.图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN和M′N′是间距为h的两平行极板,其上分别有正对的两个小孔O和O′,

31

O′N′=ON=d,P为靶点,O′P=kd(k为大于1的整数).极板间存在方向向上的匀强电场,两极板间电压为U.质量为m、带电量为q的正离子从O点由静止开始加速,经O′进入磁场区域.当离子打到极板上O′N′区域(含N′点)或外壳上时将会被吸收.两虚线之间的区域无电场和磁场存在,离子可匀速穿过.忽略相对论效应和离子所受的重力.求: (1)离子经过电场仅加速一次后能打到P点所需的磁感应强度大小; (2)能使离子打到P点的磁感应强度的所有可能值;

(3)打到P点的能量最大的离子在磁场中运动的时间和在电场中运动的时间.

63.某种加速器的理想模型如图1所示:两块相距很近的平行小极板中间各开有一小孔a、b,两极板间电压uab的变化图象如图2所示,电压的最大值为U0、周期为T0,在两极板外有垂直纸面向里的匀强磁场.若将一质量为m0、电荷量为q的带正电的粒子从板内a孔处静止释放,经电场加速后进入磁场,在磁场中运动时间T0后恰能再次从a 孔进入电场加速.现该粒子的质量增加了

.(粒子在两极板间的运动时间不计,两极板外无电场,不考虑粒子所受的

重力)

(1)若在t=0时刻将该粒子从板内a孔处静止释放,求其第二次加速后从b孔射出时的动能; (2)现在利用一根长为L的磁屏蔽管(磁屏蔽管置于磁场中时管内无磁场,忽略其对管外磁场的影响),使图1中实线轨迹(圆心为O)上运动的粒子从a孔正下方相距L处的c孔水平射出,请在答题卡图上的相应位置处画出磁屏蔽管;

(3)若将电压uab的频率提高为原来的2倍,该粒子应何时由板内a孔处静止开始加速,才能经多次加速后获得最大动能?最大动能是多少?

64.离子推进器是太空飞行器常用的动力系统.某种推进器设计的简化原理如图1,截面半径为R的圆柱腔分别为两个工作区,I为电离区,将氙气电离获得1价正离子;Ⅱ为加速区,长度为L,两端加有电压,形成轴向的匀强电场.I区产生的正离子以接近0的初速度进入Ⅱ区,被加速后以速度vM从右侧喷出.

32

Ⅰ区内有轴向的匀强磁场,磁感应强度大小为B,在离轴线处的C点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图2所示(从左向右看).电子的初速度方向与中心O点和C点的连线成α角(0<α<90◦).推进器工作时,向Ⅰ区注入稀薄的氙气.电子使氙气电离的最小速度为v0,电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好.已知离子质量为M;电子质量为m,电量为e.(电子碰到器壁即被吸收,不考虑电子间的碰撞).

(1)求Ⅱ区的加速电压及离子的加速度大小; (2)为取得好的电离效果,请判断Ⅰ区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);

(3)α为90◦时,要取得好的电离效果,求射出的电子速率v的范围; (4)要取得好的电离效果,求射出的电子最大速率vM与α的关系. 65.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L,磁场方向相反且垂直纸面.一质量为m、电量为﹣q、重力不计的粒子,从靠**行板电容器MN板处由静止释放,极板间电压为U,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角θ=30°.

(1)当Ⅰ区宽度L1=L、磁感应强度大小B1=B0时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30°,求B0及粒子在Ⅰ区运动的时间t0;

(2)若Ⅱ区宽度L2=L1=L磁感应强度大小B2=B1=B0,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h;

(3)若L2=L1=L、B1=B0,为使粒子能返回Ⅰ区,求B2应满足的条件;

(4)若B1≠B2、L1≠L2,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射入的方向总相同,求B1、B2、L1、L2、之间应满足的关系式.

33

因篇幅问题不能全部显示,请点此查看更多更全内容