* *
5.3为了研究中国出口商品总额 2015年相关的指标数据,如表
EXPORT对国内生产总值 GDP的影响,搜集了 1990
5.3所示。
表3中国出口商品总额与国内生产总值 时间 出口商品总额 国内生产总值 时间 (单位:亿元) 出口商品总额 国内生产总值 EXPORT 1991 1992 1993 1994 1995 1996 1997 1998 1999 3827.1 4676.3 5284.8 10421.8 12451.8 12576.4 15160.7 15223.6 16159.8 20634.4 2000 2001 2002 2003 22024.4 26947.9 36287.9 GDP 22005.6 27194.5 35673.2 48637.5 61339.9 71813.6 79715.0 85195.5 90564.4 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 100280.1 110863.1 121717.4 EXPORT 49103.3 62648.1 77597.2 93627.1 100394.9 82029.7 107022.8 123240.6 129359.3 137131.4 143883.7 141166.8 GDP 161840.2 187318.9 219438.5 270232.3 319515.5 349081.4 413030.3 489300.6 540367.4 595244.4 643974.0 685505.8 2014 2015 137422.0 资料来源:《国家统计局网站》 (1) 根据以上数据,建立适当线性回归模型。
(2) 试分别用White检验法与ARCH检验法检验模型是否存在异方差? (3)
如果存在异方差,用适当方法加以修正。
* *
解:(1)
Dependent Variable: Y Method: Least Squares Date: 04/18/20 Time: 15:38 Sample: 1991 2015 Included observations: 25
Variable C X
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) 模型回归的结果:
A
Coefficient -673.0863 4.061131 0.946323 0.943990
49784.06 5.70E+10 -304.8174 405.4924
Std. Error 15354.24 0.201677
t-Statistic -0.043837 20.13684
Prob. 0.9654
0.0000 234690.8 210356.7 0 24.545424.642924.57240.36622
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat
1 4 8
0.000000
Y 673.0863 4.0611Xi
t ( 0.0438 )(20.1368)
* *
R2 0.9463, n 25
(2) white:该模型存在异方差
Heteroskedasticity Test: White F-statistic Obs*R-squared Scaled explained SS
4.493068 7.250127 8.361541
Prob. F(2,22) Prob. Chi-Square(2) Prob. Chi-Square(2)
0.0231 0.0266 0.0153
Test Equation:
Dependent Variable: RESIDE Method: Least Squares Date: 04/18/20 Time: 17:45 Sample: 1991 2015 Included observations: 25
Variable C XA2 X
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
Coefficient -1.00E+09 -0.455420 102226.2 0.290005 0.225460 3.38E+09 2.51E+20 -582.4119 4.493068
Std. Error 1.43E+09 0.420966 60664.19
t-Statistic -0.700378 -1.081847 1.685117
Prob. 0.4910
0.2910 1 2.28E+09 3.84E+09 46.832946.979246.87350.749885 2 2 6
0.106
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat
0.023110
ARCH检验:该模型存在异方差
Heteroskedasticity Test: ARCH F-statistic Obs*R-squared 18.70391 11.02827 Prob. F(1,22) Prob. Chi-Square(1) 0.0003 0.0009 Test Equation:
Dependent Variable: RESIDA2 Method: Least Squares Date: 04/18/20 Time: 19:55 Sample (adjusted): 1992 2015
* *
Included observations: 24 after adjustments
Variable
C
RESIDA2(-1) R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
Coefficient 8.66E+08 0.817146 0.459511 0.434944 2.93E+09 1.89E+20 -556.1552 18.70391
Std. Error 6.92E+08 0.188944
t-Statistic 1.251684 4.324802
Prob. 0.2238
0.0003 2.37E+09 3.90E+09
46.51293 46.61110 46.53898 0.888067
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat
0.000273
(3)修正:加权最小二乘法修正
却 WF Woricflil-ri U
TLECi id tl e^cJ\\ 1i « T t\"l t-| L日芦£臼电*电引 OdiJ 1 0*左(■ 20 3>5 r^lucilifl -MI^I TGR 1 Z7Q I S w= — T ,皿”= 「「」工口工『日匕日吝口口「cDK E Ba^-oa 山口 fE=-UH a P-OE= -口曰 3.2 1 且-口9 I B之与尸-口口 ti .3-Z2E-DO 出q,峙尸・C旦( 4.3-1 E-O^ 3 0 3IE 09 N.HMU O-QI 立o右匚 Included observations: 25 Weighting series: W2 Weight type: Inverse variance (average scaling) Variable Coefficient Std. Error t-Statistic Prob. P U 7 nQ r U J-4m y Q M-n!R-0 ;a 9m 0: B oaooom 1 m = 2 QH rK > - nO 4 TDE--W Z.&15^=- DC 1 hi-tiE - \"IIIJ i. um r ci Q SJ^F -iii i旦日二-①口 Dependent Variable: Y Method: Least Squares Date: 04/18/20 Time: 20:46 Sample: 1991 2015 C X 10781.17 3.931606 2188.706 0.192004 4.925821 20.47667 0.0001 0.0000 Weighted Statistics R-squared Adjusted R-squared S.E. of regression Sum squared resid 0.947998 0.945737 8420.515 1.63E+09 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion 51703.40 11816.72 20.99135 21.08886 * * Log likelihood F-statistic Prob(F-statistic) -260.3919 419.2938 0.000000 Hannan-Quinn criter. Durbin-Watson stat Weighted mean dep. 9 3 0 21.01830.5398639406.3 Unweighted Statistics R-squared Adjusted R-squared S.E. of regression 0.944994 0.942602 50396.82 Mean dependent var S.D. dependent var Sum squared resid 7 0 234690.8 210356.5.84E+1 修正后进行white检验: Heteroskedasticity Test: White F-statistic Obs*R-squared Scaled explained SS 0.261901 0.581387 0.211737 Prob. F(2,22) Prob. Chi-Square(2) Prob. Chi-Square(2) 0.7720 0.7477 0.8995 Test Equation: Dependent Variable: WGT_RESIDA2 Method: Least Squares Date: 04/18/20 Time: 20:41 Sample: 1991 2015 Included observations: 25 Collinear test regressors dropped from specification Variable C X*WGTA2 WGTA2 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Coefficient 71441488 -2711.961 13536351 0.023255 -0.065539 63753972 8.94E+16 -483.1391 0.261901 Std. Error 22046212 5055.773 20714871 t-Statistic 3.240534 -0.536409 0.653461 Prob. 0.0038 0.5971 2 65232673 61762160 38.89113 39.037338.93170.898909 0 7 0.520 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat 0.771953 修正后的模型为 A Y 10781.17 3.931606Xi t (4.925821 )(20.47667) R2 0.9480, n 25 * * 5.4 表5.4的数据是2011年各地区建筑业总产值(X)和建筑业企业利润总额(Y)。 表5.4 地区 各地区建筑业总产值(X)和建筑业企业利润总额( 建筑业总产值X 建筑业企业利 润总额Y 地区 Y)(单位:亿元) 建筑业总产值X 建筑业企业 利润总额Y 北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 6046.22 2986.45 3972.66 2324.91 1394.68 6217.52 1626.65 2029.16 4586.28 15122.85 14907.42 3597.26 3692.62 2095.47 6482.90 5279.36 216.78 79.54 127.00 49.22 105.37 224.31 89.03 58.92 166.69 595.87 411.57 127.12 126.47 62.37 291.77 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 5586.45 3915.02 5774.01 1553.07 255.47 3328.83 5256.65 824.72 1868.40 124.47 3216.63 925.84 319.42 427.92 1320.37 231.46 124.77 251.69 26.24 6.44 155.34 177.19 14.39 61.88 5.75 104.38 29.33 8.35 11.25 27.60 200.09 数据来源:国家统计局网站 根据样本资料建立回归模型,分析建筑业企业利润总额与建筑业总产值的关系, 存在异方差,如果有异方差,选用最简单的方法加以修正。 并判断 模型是否 解:散点图: * * 建立线性回归模型: Dependent Variable: Y Method: Least Squares Date: 04/18/20 Time: 21:16 Sample: 1 31 Included observations: 31 Variable C X R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) i Coefficient 2.368138 0.034980 0.932055 0.929712 34.33673 34191.33 -152.5761 397.8152 Std. Error 9.049371 0.001754 t-Statistic 0.261691 19.94530 Prob. 0.7954 0.0000 134.4574 129.5145 9 9.9726410.065110.00282.57284 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat 6 1 1 0.000000 white检验: Heteroskedasticity Test: White * * 0.000 F-statistic Obs*R-squared 26.00369 20.15100 Prob. F(2,28) Prob. Chi-Square(2) 0 0.0000 * * Scaled explained SS 40.83473 Prob. Chi-Square(2) 0.0000 Test Equation: Dependent Variable: RESIDA2 Method: Least Squares Date: 04/18/20 Time: 21:19 Sample: 1 31 Included observations: 31 Variable C XA2 X R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Coefficient 498.3340 4.51E-05 -0.158176 0.650032 0.625035 1477.458 61120730 -268.6499 26.00369 Std. Error 559.4185 1.45E-05 0.221918 t-Statistic 0.890807 3.110610 -0.712768 Prob. 0.3806 0.0043 9 1102.946 2412.791 17.52580 17.664517.57102.732317 4 8 0.481 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat 0.000000 模型存在异方差 模型修正:加权最小二乘法 Dependent Variable: Y Method: Least Squares Date: 04/18/20 Time: 21:24 Sample: 1 31 Included observations: 31 Weighting series: W2 Weight type: Inverse variance (average scaling) Variable C X Coefficient 0.020734 0.034505 Std. Error t-Statistic 1.351842 0.002445 0.015338 14.11049 Prob. 0.9879 0.0000 Weighted Statistics R-squared 0.872866 Mean dependent var 19.08548 * * Prob(F-statistic) 0.800417 0.868482 6.525709 1234.962 -101.1016 199.1059 0.000000 S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat Weighted mean dep. 6.416052 6.651717 6.744233 6.681875 2.201198 9.525906 Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Unweighted Statistics R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat 0.930826 0.928441 34.64582 2.531761 Mean dependent var S.D. dependent var Sum squared resid 74 45 66 134.45129.5134809. 加权后进行white检验: Heteroskedasticity Test: White F-statistic Obs*R-squared Scaled explained SS 0.224402 0.489051 1.141138 Prob. F(2,28) Prob. Chi-Square(2) Prob. Chi-Square(2) 0.8004 0.7831 0.5652 Test Equation: Dependent Variable: WGT_RESIDA2 Method: Least Squares Date: 04/18/20 Time: 21:25 Sample: 1 31 Included observations: 31 Collinear test regressors dropped from specification Variable C X*WGTA2 WGTA2 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Coefficient 28.90647 0.074634 -9.628706 0.015776 -0.054526 96.03099 258214.7 -183.9143 0.224402 Std. Error 24.35074 0.111471 15.02003 t-Statistic 1.187088 0.669539 -0.641058 Prob. 0.2452 0.5086 7 39.83747 93.51533 8 Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat 6 2 3 12.058912.197712.10422.053490.526 Mean dependent var S.D. dependent var Akaike info criterion 修正成功,修正后的模型为: * * A Y 0.020734 0.03450X t (0.015338)(14.11049) R 0.8729, n 31 2 5.5表5.5是2015年中国各地区人均可支配收入( 的数据。 X)与居民每百户汽车拥有量( Y) 表5.5 中国各地区人均可支配收入 居民每百户 人均可支配 时间 收入(元) 汽车拥有量 X与居民每百户汽车拥有量 人均可支配 时间 收入(元) 汽车拥有量 居民每百户 X (辆)Y X (辆)Y 北京 48458.0 31291.4 18118.1 17853.7 22310.1 24575.6 18683.7 18592.7 49867.2 45.0 37.7 30.4 20.7 28.5 18.1 19.3 10.7 24.3 湖北 20025.6 19317.5 27858.9 16873.4 18979.0 20110.1 17221.0 13696.6 15222.6 12.9 16.4 24.6 18.0 15.5 15.4 15.3 15.0 24.2 天津 湖南 河北 广东 山西 广西 内家古 海南 辽宁 重庆 吉林 四川 黑龙江 贵州 上海 云南 * * Prob(F-statistic) 0.800417 江苏 29538.9 35537.1 18362.6 25404.4 18437.1 22703.2 17124.8 31.3 39.8 14.8 22.3 16.7 37.8 西藏 12254.3 17395.0 13466.6 15812.7 17329.1 16859.1 21.5 15.8 13.7 24.3 25.2 19.9 浙江 陕西 安徽 甘肃 福建 青海 江西 宁夏 山东 新疆 河南 17.4 (1) 试根据上述数据建立各地区人均可支配收入与各地区居民每百户汽车拥有量的线性回 归模型。 (2) 选用适当方法检验模型是否存在异方差,并说明存在异方差的理由。 (3) 如果存在异方差,用适当方法修正。 解:( 1) 散点图: 50 10 15 10,000 45 40 35 丫 30 25 20 20,000 30,000 X 40,000 50,000 60,000 建立线性回归模型 Dependent Variable: Y Method: Least Squares Date: 04/18/20 Time: 21:32 Sample: 1 31 Included observations: 31 * * Variable C X Coefficient 8.920236 0.000612 0.40480.38436.78771336.122 -102.3220 19.72799 19 0.0001 Std. Error 3.257781 0.000138 t-Statistic 2.738133 4.441620 4 Prob. 0.0100.0001 22.33871 8.650729 6.73046.82296.76061.488249 64 07 28 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) 59 37 23 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat A Y 8.920236 0.000612Xi t (2.738133)(4.441620) R 0.4049, n 31 (2)模型检验:white 检验 2 Heteroskedasticity Test: White F-statistic Obs*R-squared Scaled explained SS 4.652107 7.731852 5.765810 Prob. F(2,28) Prob. Chi-Square(2) Prob. Chi-Square(2) 0.0180 0.0209 0.0560 Test Equation: Dependent Variable: RESIDA2 Method: Least Squares Date: 04/18/20 Time: 21:35 Sample: 1 31 Included observations: 31 Variable C XA2 X R-squared Adjusted R-squared S.E. of regression Coefficient 4.550271 3.94E-08 0.000756 0.249415 0.195801 51.29246 Std. Error 76.95546 9.43E-08 0.005825 t-Statistic . 0.059129 0.417357 0.129842 Prob0.9533 0.6796 0.8976 43.10072 57.19682 10.80473 Mean dependent var S.D. dependent var Akaike info criterion * * Sum squared resid Log likelihood F-statistic Prob(F-statistic) 73665.66 -164.4733 4.652107 Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat 50 97 88 10.94310.8492.1007 0.018014 2 nR 7.7319,由 White 检验知, 在 0.05下,查 2 2 分布表 分布表得临界值 0.05 (2) 5.9915 nR2 X(2) 存在异方差 (3) 模型修正:加权最小二乘法 Dependent Variable: Y Method: Least Squares Date: 04/18/20 Time: 21:54 Sample: 1 31 Included observations: 31 Weighting series: W2 Weight type: Inverse variance (average scaling) Variable C X Coefficient 0.020734 0.034505 Std. Error 1.351842 0.002445 t-Statistic 0.015338 14.11049 Prob. 0.9879 0.0000 Weighted Statistics R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic 0.872866 0.868482 6.525709 1234.962 -101.1016 199.1059 0.000000 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat Weighted mean dep. 19.08548 6.416052 7 3 5 8 6 6.651716.744236.681872.201199.52590 Prob(F-statistic) Unweighted Statistics R-squared Adjusted R-squared 0.930826 0.928441 Mean dependent var S.D. dependent var 134.4574 129.5145 * * S.E. of regression Durbin-Watson stat 34.64582 2.531761 Sum squared resid 34809.66 white检验 Heteroskedasticity Test: White F-statistic Obs*R-squared Scaled explained SS 0.224402 0.489051 1.141138 Prob. F(2,28) Prob. Chi-Square(2) Prob. Chi-Square(2) 0.8004 0.7831 0.5652 Test Equation: Dependent Variable: WGT_RESIDA2 Method: Least Squares Date: 04/18/20 Time: 21:54 Sample: 1 31 Included observations: 31 Collinear test regressors dropped from specification Variable C X*WGTA2 WGTA2 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Coefficient 28.90647 0.074634 -9.628706 0.015776 -0.054526 96.03099 258214.7 -183.9143 0.224402 Std. Error 24.35074 0.111471 15.02003 t-Statistic 1.187088 0.669539 -0.641058 Prob. 0.2452 0.5086 7 39.83747 93.51533 8 12.058912.197712.10422 2.053493 0.526 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat 6 0.800417 Y 0.020734 0.03450% t (0.015338)(14.11049) R 0.8729 ,n 31 2 因篇幅问题不能全部显示,请点此查看更多更全内容