您的当前位置:首页正文

八年级上册数学全等三角形各节同步练习

2020-10-17 来源:我们爱旅游


八 年 级 课 程 练 习

数 学

上 册

目 录

第十一章 全等三角形 ··········································································· 1

§11.1 全等三角形 ········································································· 1 §11.2 三角形全等的判定(1)(2) ························································ 3 §11.2 三角形全等的判定(3)(4) ························································ 5 §11.2 三角形全等的判定(5)(6) ························································ 9 §11.3 角的平分线的性质(1)(2) ······················································· 13 第十二章 轴对称 ················································································ 17

§12.1 轴对称(1)(2)(3) ······························································· 17 §12.2 作轴对称图形

····································································

·························································

23 23 29

§12 作轴对称图形(1)(2) §12.3 等腰三角形

§12 用坐标表示轴对称····························································· 27

·······································································

§12.3.1 等腰三角形(1)(2)(3) ······················································· 29 §12.3.2 等边三角形(1)(2) ···························································· 35 第十三章 实数 ·················································································· 39

§13.1 平方根(1)(2)(3) ································································ 39 §13.2 立方根(1)(2) ····································································· 45 §13.3 实数(1)(2) ······································································· 49 第十四章 一次函数·············································································· 53

§14.1 变量与函数········································································· 53 §.1 变量 ············································································· 53 §.2 函数(1)(2) ····································································· 54 §.3 函数的图象(1)(2) ···························································· 57 §14.2 一次函数 ·········································································· 61 §14.2.1 正比例函数 ····································································· 61 §14.2.2 一次函数(1)(2) ······························································· 63 § 一次函数(3)(4) ······························································· 67 §14.3 用函数观点看方程(组)与不等式 ·············································· 71 §14.3.1 一次函数与一元一次方程 ···················································· 71 §14. 一次函数与一元一次不等式 ················································· 73 §14. 一次函数与二元一次方程(组) ·············································· 75 §14.4 课题学习(1)(2) ·································································· 77 第十五章 整式的乘除与因式分解······························································ 79

§15.1 整式的乘法········································································· 79

§15.1.1 同底数幂的乘法································································ 79 §15.1.2 幂的乘方········································································· 81 §15.1.3 积的乘方········································································· 83 §15.1.4 整式的乘法······································································ 85 §15.2 乘法公式 ·········································································· 87 §15.2.1 平方差公式 ····································································· 87 §15.2.2 完全平方公式 ·································································· 89 §15.3 整式的除法········································································· 91 §15. 同底数幂的除法································································ 91 §15. 整式的除法······································································ 93 §15.4 因式分解 ·········································································· 95 §15. 提公因式法······································································ 95 §15. 公式法(1)(2)··································································· 97 第十一章 全等三角形达标检测(A) 第十一章 全等三角形达标检测(B) 第十二章 轴对称达标检测(A) 第十二章 轴对称达标检测(B) 第十三章 实数达标检测(A) 第十三章 实数达标检测(B)

······················································· ·······················································

101 103 105 107 109 111 113 115 119 121 125 133

······························································ ······························································

································································ ································································

·························································· ··························································

········································· ·········································

第十四章 一次函数达标检测(A) 第十四章 一次函数达标检测(B)

第十五章 整式的乘除与因式分解达标检测(A) 第十五章 整式的乘除与因式分解达标检测(B) 期中检测试题 期末检测试题

··················································································· ···················································································

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

第十一章 全等三角形

§11.1 全等三角形

一、选择题

1.下列说法:①全等三角形的周长相等;②全等三角形的面积相等;③周长相等的两个三角形全等;④全等三角形的对应边相等. 其中正确的有( ). A.1个 B.2个 C.3个 D.4个 2.如图,△ABC≌△ADE,B和D、C和E是对应点, 如果AB=4cm, DE=6cm, AC=5cm, 那么BC的长 是( ).

D

A (第2题)

C E

B A.5cm B.6cm C.4cm D.无法确定

3.如果△ABD≌△ACE,那么对应角,书写正确的是( ). A.∠B=∠C,DACBAE,AECADB B.∠B=∠C,ADCAEB,DACBAE C.∠B=∠C,BADCAE,ADBAEC D.∠B=∠C,BADCAE,AEBAEC 4.如图,△ABC≌△CDA,∠CAD=∠ACB,则下列结论 中错误的是( ).

A.AD∥BC B.AB∥CD C.AB=CD D.AB=BC A 二、填空题

5.能够 的两个图形,叫全等形,能够 的两个三角形,叫做全等三角形, 叫做对应顶点, 叫做对应边, 叫做对应角. 6.一个图形经过 、 、 后,位置变化了,但 、 都没有变化,所以变换前后的两个图形全等.

7.已知:△ABO≌△CDO,则对应角有 ,对应边有 .

A

8.如图,将长方形ABCD沿AE折叠,使点D落在BC边的

D

(第8题) F (第4题)

D B

C

F点处,如果∠BAF=60°,则DAE= .

三、解答题

B

E

C 9.如图,若把△ABO沿直线AO翻折得到△ACO,ABCO4, AC比A CO长多少?为什么?

B O (第9题)

C

10.如图,△ABD≌△ACE,∠D=∠E,AE8,AB5,ABD50°, ∠E30.求CD的长和A的度数.

D C ----完整版学习资料分享----

O A E 资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

11.如图,已知:点E、F在BC上,△ABF≌△ACE, 点F和点E,点B和点C是对应顶点,找出图中所有的 相等线段和相等的角.

12.如图,已知△ABC≌△DEF,B与E、C与F是对应的顶点,请你想一想,经过怎样的图形变换,可使这两个三角形重合

B F (第12题) D A B E F C

(第11题)

A C E

§11.2 三角形全等的判定(1)

一、选择题

1.如图,已知:ABAC,BDCD,则可推出( ). A. △ABD≌△BCD B. △ABD≌△ACD C. △ACD≌△BCD D. △ACE≌△BDE 2.如图,已知:点A、E、F、C在同一条直线上,ADCB,

A E B A

C E B (第1题)

D

DFBE,AECF, 则下列结论不正确的是( ).

A. AFCE B.BE∥DF C. AD∥BC D. ABEC 二、填空题

----完整版学习资料分享----

D F C

(第2题)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

3.在△ABC和△EFD中,已知:ACED,ABEF,再添上条件 就 可以用“SSS”来判断△ABC≌△EFD.

4.如图,在△ABC中,ABAC,PBPC,连结AP并延长交

A P B D C BC于D,则△ABP≌ ,∠BAP= .

三、解答题

5.如图,ABAC,DBEC,BECD. 求证:BC.

B (第4题)

A D E

(第5题)

C 6.如图,已知:A、C、F、D四点在同一条直线上,ABDE,BCA EF,AFDC.求证:AB∥DE.

B C F D (第6题)

E

§11.2 三角形全等的判定(2)

一、选择题

1.下列说法中,错误的是( ).

A. 有三边对应相等的两个三角形全等 B. 等底等高的两个三角形面积相等 C. 全等三角形的面积一定相等 D. 两个面积相等的三角形一定全等 2.如图,已知ABAC,BDCE, F为BC中点,则图中 全等的三角形共有( ). A. 5对 B. 4对 C. 3对 D. 2对 二、填空题

3.如图,已知ABCD,ADCB,∠145,∠275, 则∠A .

4.如果△ABC的三边长分别是3、5、7,△DEF的三边长分别

B D F E (第2题)

A C

D A 1 2

C B (第3题)

是3、3x2、2x1,如果两个三角形全等,那么x . 三、解答题

5.已知有一个三角形钢架,如图,D为BC边的中点,要求:AD为BC的垂直平分线时,为合格

----完整版学习资料分享----

A 资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

品,现在只有一把刻度尺,利用你学过的知识,如何检验此钢架是否合格.

6.如图,已知AB、CD相交于点O,且ABCD,ADCB,试说明A与C 的大小关系(提示:连接DB).

D (第6题)

A O C B §11.2 三角形全等的判定(3)

一、选择题

1.能判定两个等腰三角形全等的条件是( ).

A. 两边长分别是6和9 B. 两边长分别是6和10 C. 两边长分别是6和11 D. 两边长分别是6和12 2.如图,ADBC于D,CFAB于F,交AD于E,

F A E B

D

(第2题)

ADCF,下列结论中,不成立的是( ).

A. AC B. BDBF C. ABCB D. B3C 2C

3.如图,为了测量水池A、B两边的距离,可以先过点A作 射线AE,再过点B作BDAE于E,在AD的延长线 上截取DCAD,连接BC,则BC的长就是A、B之

A B D C E 间的距离,其中用来判定ABD≌CBD的理由是( ). (第3题)

A. SSS B. SAS C. HL D. AAS

4.如图,已知AC和BD互相平分,若AC8,BD6,且BOC的周长为12,则的AD 长为( )

A. 7 B. 6 C. 5 D. 4

A A D D A C D O E 12O 1B 2D E E B B C A C F B (第7题)

(第4题)

(第5题)

(第6题)

C

----完整版学习资料分享----

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

二、填空题

5.如图,点C、F在BE上,12,BCEF,若以“SAS” 为依据,请你补充一个条件 ,使ABC≌DEF.

6.如图,点D在AB上,点E在AC上,CD与BE交于点O,且ADAE,ABAC,若

B20,则C度数为 度.

7.如图,已知ADAE,BECD,12,1105,BAE65,则BAD的度数为 .

8.如图,已知ABAD,ACAE,,只要具备条件∠ =∠ 或∠ =∠ ,就可以得 ≌ .

三、解答题

C B

A

E D (第8题)

9.如图,已知BO平分CBA,CO平分ACB,MN∥BC,若AB12,AC18, 求AMN周长.

10.如图,已知ABAC,ADAE,ABAD,ACAE, 求证:BEDC.

11.如图,在ABC中,ABAC,BE、CD是ABC的中线, 求证:CDBE.

----完整版学习资料分享----

B

(第11题)

A N

B (第9题)

O

M

C

B A

C E D (第10题)

A

D E C

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

§11.2 三角形全等的判定(4)

一、选择题

1.在ABC和A1B1C1中,已知:BB1,BCB1C1,下列判断错误的是( ). A.若添加条件AA1,则ABC≌A1B1C1 B.若添加条件CC1,则ABC≌A1B1C1 C.若添加条件ABA1B1,则ABC≌A1B1C1 D.若添加条件ACA1C1,则ABC≌A1B1C1 2.下列命题中错误的是( ).

A. 全等三角形对应边的中线相等 B. 周长相等的两个三角形全等 C. 全等三角形的对应边上的高相等 D. 全等三角形的对应角的平分线相等3.如图:MBND,MBANDC,下列条件 M

N 不能判定ABM≌CDN的是( )

NA A. M B. ABCD C B D (第3题) C. AM=CN D. AM∥CN 二、填空题

A A B E 4.如图,已知点D、E、F、B在同一条直线上,

F D AB∥CD,AE∥CF,且AECF若 E BD10,BF2,则EF .D C B C

(第4题)

(第5题)

5.如图,已知:BADCAE,ABDACE,ABAC, 则△ ≌△ .

6.如图,已知:CDAB,BEAC, 垂足分别为 A 12D、E,BE、CD相交于点O,12, D E 则图中全等的三角形共有 对.

B (第6题)

C 三、解答题

A 7.如图,已知:AD∥BC,AB∥DC.

B

----完整版学习资料分享----

D

C

(第7题)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

求证:ABCD,AC.

8.如图,已知:CD、BE交于点A,M是BC中点,

D A B 3124E 12,34. 求证:BME≌CMD.

9.如图,已知:AC、BD、EF交于点O,AB∥CD,AE=CF. 求证:(1)AOCO,(2)ABCD.

A E D M C (第8题)

F O B C (第9题)

10.如图,已知:AB∥CD,AD∥BC,且AECF,DEBF.试猜想E与F 的大小有什么关系,并证明你的猜想.

E A B (第10题)

D C F

§11.2 三角形全等的判定(5)

一、选择题

1.使两个直角三角形全等的条件可以是( ).

A. 一对锐角对应相等 B. 两对锐角对应相等 C. 一条边对应相等 D. 两条直角边对应相等 2.如图,在ABC中,C90,DEAB于D,BCBD, 如果AC3cm,那么AEED等于( ).

----完整版学习资料分享----

A D E

(第2题)

B C

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

A. 2cm B. 3cm C. 4cm D. 5cm 3.如图,在ABC中,BEAC于点E,CDAB于点D,

A D

E P B (第3题)

CD、BE交于点P,DCEB,则下列结论正确的是( ).

A. DPE2PBC B. EPC2PBC C. ADC2PBC D. DPE2DBC 4.下列语句正确的是( ).

A. 两锐角对应相等的两个直角三角形全等

B. 一直角边及它们的中线对应相等的两个直角三角形全等 C. 两个直角三角形一定全等

D. 斜边及斜边上的高对应相等的两个直角三角形全等 二、填空题

5.如图,DEAB于E,DFAC于F,

B A C E (第6题)

C

A E B D F C (第5题)

D AEAF.根据 可判定AED≌AFD.

6.如图,AEBD于C,ABED,ACEC. 则AB与ED的位置关系是 .

7.如图,在ABC中,AD是ABC的高线,请再添加 一个条件 就能判定ABD≌ACD. 8.如图,BE和CD是ABC的高,它们相交于点O,且

A D A C

B

(第7题)

D O B E C

BECD,则图中有 对全等三角形,其中根

据HL来判定三角形全等的有 对. 三、解答题

(第8题)

A 9.已知:在ABC中,BDDC,DEAB于E,DFAC 于F,且DEDF,试问:AB与AC相等吗?为什么?

10.如图,两个直角三角形重叠在一起,将其中一个三角形 沿着从点B到点C的方向平移得到DEF的位置,

B E B

D

F C (第9题)

F C H A E ED9,BF4,AH3. 求:四边形CEDH的面积.

----完整版学习资料分享----

D (第10题)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

11.如图,在ABD中,ADBD,ADBC于点D,E为

A F E B D (第11题)

AC上一点,BE、AD交于点F,BFAC.

求证:BEAC.

C 12.如图,AB∥CD,A90,ACDC,BCDE,BC与DE相交于点O,试探索:DE与BC的位置关系.

A B O E C D (第12题)

§11.2 三角形全等的判定(6)

一、选择题

1.下列条件中,不能唯一作出一个三角形的是( ). A.已知两边和夹角 B.已知两角和夹边 C.已知两边和其中一边的对角 D.已知三边 2.下列各组条件中,能判定ABC≌DEF的是( ). A.ABDE,BCEF,AD B.AD,CF,ACEF

C.ABDE,BCEF,ABC的周长等于DEF的周长 D.AD,CF,BE

3.已知,在ABC中,ABAC,A36,BD是角平分线,ABm, BCn, 求CD的长. 甲同学求得:CDmn;乙同学求得:CD( ).

A.甲乙都正确 B.甲正确,乙不正确

----完整版学习资料分享----

m.下列判断正确的是n资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

C.甲不正确,乙正确 D.甲、乙都不正确 二、填空题

4.三个角都对应相等的两个三角形 全等(填“一定”或“不一定”).

B A 5.如图,点F、A、C、E在同一条直线上,

ABAD,BCCD,BCEB20.

则FAD的度数为 .

F A C E D B E D C

(第5题) (第6题)

6.如图,已知:AD1,CD2,AB4,若SEDC:SABC1:2,则BE= .

C 7.如图,在ABC中,点D在AB上,ACB70,现将 E ABC的B折过去,使顶点B落在点E处,CD为折痕,

且AC交ED于点F,若ECA20,则ACD的度 数为 . 三、解答题

8.已知:ABAC,BE、CD交于点P,且BDEC, 求证:PDPE.

B A F D B (第7题)

A D P C

(第8题)

E

9.如图,已知:CACB,ADBD,M、N分别是CA、CB中点,求证:DMDN

C

(提示:连接CD).

M N A D (第9题)

B 10.如图,已知:ABBC,ACDC,12,ACED.求证:ABEC.

----完整版学习资料分享----

D (第10题)

A B

E F

12C 资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

11.已知:ABC,画出DEF,使DEF≌ABC.(要求:用直尺和圆规来完成图 形,保留作图痕迹).

B (第11题)

A C

§11.3 角的平分线的性质(1)

一、选择题

1.下列说法中错误的是( ).

A.到已知角的两边距离相等的点与角的顶点的连线平分已知角

B.已知角内有两点,各自到角的两边的距离相等,则经过这两点的连线平分已知角 C.不在角平分线上的点到这个角的两边的距离不相等 D.到角的两边距离相等的点有可能不在这个角的平分线上 2.如图,PAOM于点A,PBON于点B,下列条件: ①OP平分MON;②OPAOPB;③OAOB. 能证明AOP≌BOP的是( ).

A.只有①② B.只有①③

C.只有②③ D.①②③

3.如图,已知:AP、CP分别是ABC的外角DAC、ECA

B 的平分线,PMBD,PNBE,垂足分别为M、N. 那么PM、PN的关系为( ).

A.PM>PN B.PMPN C.PM<PN D.无法确定

C A M D

P C N E B O (第4题)

A O M P B N

(第2题)

(第3题)

A 4.如图,ABC的三边AB、BC、CA分别是20、30、40,其三条角平分线相交于点O,则SABO:

SBCO:SCAO的值为( ).

A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5 二、填空题

5.如图,如果ABC≌AED,则相等的边是

E A ,则相等的角是 . C ----完整版学习资料分享----

B D (第5题)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

6.如图,AB∥CD,BO平分ABD,DO平分BDC,则点

O到AB的距离一定等于点O到 的距离,又等于点

O到 的距离.

7.如图,在RtABC中,C90,BD 是ABC的角平分线,交AC于点D, 若CD2,AB10,则ABD的面积 是 . 三、解答题

C A A O

D B (第6题)

B

D C

(第7题)

8.如图,在ABC中,AD是BAC的角平分线,且CDBD,DE、DF分别垂直于AB、AC,垂足为E、F,求证:BDECDF

9.如图,在ABC中,AD、AE分别是ABC的高和角平分线,若B30,

(1)DAE的度数,(2)试写出DAE与CB有何关系,证明你的结论. C50,求:

10.求证:全等三角形的对应角的平分线相等(要求:自己画图,写出已知、求证及证明过程).

----完整版学习资料分享----

B E D (第9题)

A E B D (第8题)

F

C

A C 资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

§11.3 角的平分线的性质(2)

一、选择题

1.如图,已知:FDAM于D,FEBM于E,下列条件: ①MF是AMB的角平分线.②DFEF.③DMEM. ④MFDMFE.其中,能证明DMF≌EMF的 个数是( ).

A.1个 B.2个 C.3个 D.4个

2.下列条件不能唯一作出三角形的是( ).

A.已知三边 B.两边及其夹角 C.两边及其一边的对角 D.已知两角及其夹边 3.如图,已知:12,CD,AC、BD相交于点E,

D

下列结论不正确的是( ).

A.DABCBA B.ABC≌BAD

C.CEDE D.ABAC 4.到三角形三边距离相等的点是( ).

A.三条角平分线的交点 B.三条中线的交点

C.三条高的交点 D.以上答案都不对 二、填空题

5.如图,已知:ABC≌DEF,若DE6,AE2.则BE .

D

B A C A E B E F

B C (第5题)

A D F E (第1题)

M B

C

E A 12B (第3题)

C D (第6题)

A A (第7题)

D B D (第8题)

C 6.如图,在ABC中,C90,BD平分ABC,DEAB于E,若BCD与BCA的面积之比为2:5,则ADE与BCA的面积之比为 .

7.如图,BCAC于C,BDAD于D,请你写出适当的条件 使BCBD.

8.如图,AD是ABC的一条中线,AB8cm,AC5cm,则AD的范围是 . 三、解答题

9.如图,已知:BCDA,AECF,BEAC于E,DFAC于F. 求证:ABCD.

----完整版学习资料分享---- B A E F C D (第9题)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除

10.如图,在ABC中,ACB90,BD平分ABC,交AC于D,EDAB 于D,交BCA 延长线于F,求证:DADF.

E

11.如图,点A、E、F、C在同一条直线上,现有下面四个论断:(1)ADCB,(2)BD,(3)AECF,(4)AD∥BC.请你用其中的三个作为条件, 余下的作为结论,编写一道数学问题,并写出答案.

B A E F C (第11题)

D B C (第10题)

F

D

----完整版学习资料分享----

因篇幅问题不能全部显示,请点此查看更多更全内容