八 年 级 课 程 练 习
数 学
上 册
目 录
第十一章 全等三角形 ··········································································· 1
§11.1 全等三角形 ········································································· 1 §11.2 三角形全等的判定(1)(2) ························································ 3 §11.2 三角形全等的判定(3)(4) ························································ 5 §11.2 三角形全等的判定(5)(6) ························································ 9 §11.3 角的平分线的性质(1)(2) ······················································· 13 第十二章 轴对称 ················································································ 17
§12.1 轴对称(1)(2)(3) ······························································· 17 §12.2 作轴对称图形
····································································
·························································
23 23 29
§12 作轴对称图形(1)(2) §12.3 等腰三角形
§12 用坐标表示轴对称····························································· 27
·······································································
§12.3.1 等腰三角形(1)(2)(3) ······················································· 29 §12.3.2 等边三角形(1)(2) ···························································· 35 第十三章 实数 ·················································································· 39
§13.1 平方根(1)(2)(3) ································································ 39 §13.2 立方根(1)(2) ····································································· 45 §13.3 实数(1)(2) ······································································· 49 第十四章 一次函数·············································································· 53
§14.1 变量与函数········································································· 53 §.1 变量 ············································································· 53 §.2 函数(1)(2) ····································································· 54 §.3 函数的图象(1)(2) ···························································· 57 §14.2 一次函数 ·········································································· 61 §14.2.1 正比例函数 ····································································· 61 §14.2.2 一次函数(1)(2) ······························································· 63 § 一次函数(3)(4) ······························································· 67 §14.3 用函数观点看方程(组)与不等式 ·············································· 71 §14.3.1 一次函数与一元一次方程 ···················································· 71 §14. 一次函数与一元一次不等式 ················································· 73 §14. 一次函数与二元一次方程(组) ·············································· 75 §14.4 课题学习(1)(2) ·································································· 77 第十五章 整式的乘除与因式分解······························································ 79
§15.1 整式的乘法········································································· 79
§15.1.1 同底数幂的乘法································································ 79 §15.1.2 幂的乘方········································································· 81 §15.1.3 积的乘方········································································· 83 §15.1.4 整式的乘法······································································ 85 §15.2 乘法公式 ·········································································· 87 §15.2.1 平方差公式 ····································································· 87 §15.2.2 完全平方公式 ·································································· 89 §15.3 整式的除法········································································· 91 §15. 同底数幂的除法································································ 91 §15. 整式的除法······································································ 93 §15.4 因式分解 ·········································································· 95 §15. 提公因式法······································································ 95 §15. 公式法(1)(2)··································································· 97 第十一章 全等三角形达标检测(A) 第十一章 全等三角形达标检测(B) 第十二章 轴对称达标检测(A) 第十二章 轴对称达标检测(B) 第十三章 实数达标检测(A) 第十三章 实数达标检测(B)
······················································· ·······················································
101 103 105 107 109 111 113 115 119 121 125 133
······························································ ······························································
································································ ································································
·························································· ··························································
········································· ·········································
第十四章 一次函数达标检测(A) 第十四章 一次函数达标检测(B)
第十五章 整式的乘除与因式分解达标检测(A) 第十五章 整式的乘除与因式分解达标检测(B) 期中检测试题 期末检测试题
··················································································· ···················································································
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
第十一章 全等三角形
§11.1 全等三角形
一、选择题
1.下列说法:①全等三角形的周长相等;②全等三角形的面积相等;③周长相等的两个三角形全等;④全等三角形的对应边相等. 其中正确的有( ). A.1个 B.2个 C.3个 D.4个 2.如图,△ABC≌△ADE,B和D、C和E是对应点, 如果AB=4cm, DE=6cm, AC=5cm, 那么BC的长 是( ).
D
A (第2题)
C E
B A.5cm B.6cm C.4cm D.无法确定
3.如果△ABD≌△ACE,那么对应角,书写正确的是( ). A.∠B=∠C,DACBAE,AECADB B.∠B=∠C,ADCAEB,DACBAE C.∠B=∠C,BADCAE,ADBAEC D.∠B=∠C,BADCAE,AEBAEC 4.如图,△ABC≌△CDA,∠CAD=∠ACB,则下列结论 中错误的是( ).
A.AD∥BC B.AB∥CD C.AB=CD D.AB=BC A 二、填空题
5.能够 的两个图形,叫全等形,能够 的两个三角形,叫做全等三角形, 叫做对应顶点, 叫做对应边, 叫做对应角. 6.一个图形经过 、 、 后,位置变化了,但 、 都没有变化,所以变换前后的两个图形全等.
7.已知:△ABO≌△CDO,则对应角有 ,对应边有 .
A
8.如图,将长方形ABCD沿AE折叠,使点D落在BC边的
D
(第8题) F (第4题)
D B
C
F点处,如果∠BAF=60°,则DAE= .
三、解答题
B
E
C 9.如图,若把△ABO沿直线AO翻折得到△ACO,ABCO4, AC比A CO长多少?为什么?
B O (第9题)
C
10.如图,△ABD≌△ACE,∠D=∠E,AE8,AB5,ABD50°, ∠E30.求CD的长和A的度数.
D C ----完整版学习资料分享----
O A E 资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
11.如图,已知:点E、F在BC上,△ABF≌△ACE, 点F和点E,点B和点C是对应顶点,找出图中所有的 相等线段和相等的角.
12.如图,已知△ABC≌△DEF,B与E、C与F是对应的顶点,请你想一想,经过怎样的图形变换,可使这两个三角形重合
B F (第12题) D A B E F C
(第11题)
A C E
§11.2 三角形全等的判定(1)
一、选择题
1.如图,已知:ABAC,BDCD,则可推出( ). A. △ABD≌△BCD B. △ABD≌△ACD C. △ACD≌△BCD D. △ACE≌△BDE 2.如图,已知:点A、E、F、C在同一条直线上,ADCB,
A E B A
C E B (第1题)
D
DFBE,AECF, 则下列结论不正确的是( ).
A. AFCE B.BE∥DF C. AD∥BC D. ABEC 二、填空题
----完整版学习资料分享----
D F C
(第2题)
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
3.在△ABC和△EFD中,已知:ACED,ABEF,再添上条件 就 可以用“SSS”来判断△ABC≌△EFD.
4.如图,在△ABC中,ABAC,PBPC,连结AP并延长交
A P B D C BC于D,则△ABP≌ ,∠BAP= .
三、解答题
5.如图,ABAC,DBEC,BECD. 求证:BC.
B (第4题)
A D E
(第5题)
C 6.如图,已知:A、C、F、D四点在同一条直线上,ABDE,BCA EF,AFDC.求证:AB∥DE.
B C F D (第6题)
E
§11.2 三角形全等的判定(2)
一、选择题
1.下列说法中,错误的是( ).
A. 有三边对应相等的两个三角形全等 B. 等底等高的两个三角形面积相等 C. 全等三角形的面积一定相等 D. 两个面积相等的三角形一定全等 2.如图,已知ABAC,BDCE, F为BC中点,则图中 全等的三角形共有( ). A. 5对 B. 4对 C. 3对 D. 2对 二、填空题
3.如图,已知ABCD,ADCB,∠145,∠275, 则∠A .
4.如果△ABC的三边长分别是3、5、7,△DEF的三边长分别
B D F E (第2题)
A C
D A 1 2
C B (第3题)
是3、3x2、2x1,如果两个三角形全等,那么x . 三、解答题
5.已知有一个三角形钢架,如图,D为BC边的中点,要求:AD为BC的垂直平分线时,为合格
----完整版学习资料分享----
A 资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
品,现在只有一把刻度尺,利用你学过的知识,如何检验此钢架是否合格.
6.如图,已知AB、CD相交于点O,且ABCD,ADCB,试说明A与C 的大小关系(提示:连接DB).
D (第6题)
A O C B §11.2 三角形全等的判定(3)
一、选择题
1.能判定两个等腰三角形全等的条件是( ).
A. 两边长分别是6和9 B. 两边长分别是6和10 C. 两边长分别是6和11 D. 两边长分别是6和12 2.如图,ADBC于D,CFAB于F,交AD于E,
F A E B
D
(第2题)
ADCF,下列结论中,不成立的是( ).
A. AC B. BDBF C. ABCB D. B3C 2C
3.如图,为了测量水池A、B两边的距离,可以先过点A作 射线AE,再过点B作BDAE于E,在AD的延长线 上截取DCAD,连接BC,则BC的长就是A、B之
A B D C E 间的距离,其中用来判定ABD≌CBD的理由是( ). (第3题)
A. SSS B. SAS C. HL D. AAS
4.如图,已知AC和BD互相平分,若AC8,BD6,且BOC的周长为12,则的AD 长为( )
A. 7 B. 6 C. 5 D. 4
A A D D A C D O E 12O 1B 2D E E B B C A C F B (第7题)
(第4题)
(第5题)
(第6题)
C
----完整版学习资料分享----
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
二、填空题
5.如图,点C、F在BE上,12,BCEF,若以“SAS” 为依据,请你补充一个条件 ,使ABC≌DEF.
6.如图,点D在AB上,点E在AC上,CD与BE交于点O,且ADAE,ABAC,若
B20,则C度数为 度.
7.如图,已知ADAE,BECD,12,1105,BAE65,则BAD的度数为 .
8.如图,已知ABAD,ACAE,,只要具备条件∠ =∠ 或∠ =∠ ,就可以得 ≌ .
三、解答题
C B
A
E D (第8题)
9.如图,已知BO平分CBA,CO平分ACB,MN∥BC,若AB12,AC18, 求AMN周长.
10.如图,已知ABAC,ADAE,ABAD,ACAE, 求证:BEDC.
11.如图,在ABC中,ABAC,BE、CD是ABC的中线, 求证:CDBE.
----完整版学习资料分享----
B
(第11题)
A N
B (第9题)
O
M
C
B A
C E D (第10题)
A
D E C
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
§11.2 三角形全等的判定(4)
一、选择题
1.在ABC和A1B1C1中,已知:BB1,BCB1C1,下列判断错误的是( ). A.若添加条件AA1,则ABC≌A1B1C1 B.若添加条件CC1,则ABC≌A1B1C1 C.若添加条件ABA1B1,则ABC≌A1B1C1 D.若添加条件ACA1C1,则ABC≌A1B1C1 2.下列命题中错误的是( ).
A. 全等三角形对应边的中线相等 B. 周长相等的两个三角形全等 C. 全等三角形的对应边上的高相等 D. 全等三角形的对应角的平分线相等3.如图:MBND,MBANDC,下列条件 M
N 不能判定ABM≌CDN的是( )
NA A. M B. ABCD C B D (第3题) C. AM=CN D. AM∥CN 二、填空题
A A B E 4.如图,已知点D、E、F、B在同一条直线上,
F D AB∥CD,AE∥CF,且AECF若 E BD10,BF2,则EF .D C B C
(第4题)
(第5题)
5.如图,已知:BADCAE,ABDACE,ABAC, 则△ ≌△ .
6.如图,已知:CDAB,BEAC, 垂足分别为 A 12D、E,BE、CD相交于点O,12, D E 则图中全等的三角形共有 对.
B (第6题)
C 三、解答题
A 7.如图,已知:AD∥BC,AB∥DC.
B
----完整版学习资料分享----
D
C
(第7题)
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
求证:ABCD,AC.
8.如图,已知:CD、BE交于点A,M是BC中点,
D A B 3124E 12,34. 求证:BME≌CMD.
9.如图,已知:AC、BD、EF交于点O,AB∥CD,AE=CF. 求证:(1)AOCO,(2)ABCD.
A E D M C (第8题)
F O B C (第9题)
10.如图,已知:AB∥CD,AD∥BC,且AECF,DEBF.试猜想E与F 的大小有什么关系,并证明你的猜想.
E A B (第10题)
D C F
§11.2 三角形全等的判定(5)
一、选择题
1.使两个直角三角形全等的条件可以是( ).
A. 一对锐角对应相等 B. 两对锐角对应相等 C. 一条边对应相等 D. 两条直角边对应相等 2.如图,在ABC中,C90,DEAB于D,BCBD, 如果AC3cm,那么AEED等于( ).
----完整版学习资料分享----
A D E
(第2题)
B C
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
A. 2cm B. 3cm C. 4cm D. 5cm 3.如图,在ABC中,BEAC于点E,CDAB于点D,
A D
E P B (第3题)
CD、BE交于点P,DCEB,则下列结论正确的是( ).
A. DPE2PBC B. EPC2PBC C. ADC2PBC D. DPE2DBC 4.下列语句正确的是( ).
A. 两锐角对应相等的两个直角三角形全等
B. 一直角边及它们的中线对应相等的两个直角三角形全等 C. 两个直角三角形一定全等
D. 斜边及斜边上的高对应相等的两个直角三角形全等 二、填空题
5.如图,DEAB于E,DFAC于F,
B A C E (第6题)
C
A E B D F C (第5题)
D AEAF.根据 可判定AED≌AFD.
6.如图,AEBD于C,ABED,ACEC. 则AB与ED的位置关系是 .
7.如图,在ABC中,AD是ABC的高线,请再添加 一个条件 就能判定ABD≌ACD. 8.如图,BE和CD是ABC的高,它们相交于点O,且
A D A C
B
(第7题)
D O B E C
BECD,则图中有 对全等三角形,其中根
据HL来判定三角形全等的有 对. 三、解答题
(第8题)
A 9.已知:在ABC中,BDDC,DEAB于E,DFAC 于F,且DEDF,试问:AB与AC相等吗?为什么?
10.如图,两个直角三角形重叠在一起,将其中一个三角形 沿着从点B到点C的方向平移得到DEF的位置,
B E B
D
F C (第9题)
F C H A E ED9,BF4,AH3. 求:四边形CEDH的面积.
----完整版学习资料分享----
D (第10题)
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
11.如图,在ABD中,ADBD,ADBC于点D,E为
A F E B D (第11题)
AC上一点,BE、AD交于点F,BFAC.
求证:BEAC.
C 12.如图,AB∥CD,A90,ACDC,BCDE,BC与DE相交于点O,试探索:DE与BC的位置关系.
A B O E C D (第12题)
§11.2 三角形全等的判定(6)
一、选择题
1.下列条件中,不能唯一作出一个三角形的是( ). A.已知两边和夹角 B.已知两角和夹边 C.已知两边和其中一边的对角 D.已知三边 2.下列各组条件中,能判定ABC≌DEF的是( ). A.ABDE,BCEF,AD B.AD,CF,ACEF
C.ABDE,BCEF,ABC的周长等于DEF的周长 D.AD,CF,BE
3.已知,在ABC中,ABAC,A36,BD是角平分线,ABm, BCn, 求CD的长. 甲同学求得:CDmn;乙同学求得:CD( ).
A.甲乙都正确 B.甲正确,乙不正确
----完整版学习资料分享----
m.下列判断正确的是n资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
C.甲不正确,乙正确 D.甲、乙都不正确 二、填空题
4.三个角都对应相等的两个三角形 全等(填“一定”或“不一定”).
B A 5.如图,点F、A、C、E在同一条直线上,
ABAD,BCCD,BCEB20.
则FAD的度数为 .
F A C E D B E D C
(第5题) (第6题)
6.如图,已知:AD1,CD2,AB4,若SEDC:SABC1:2,则BE= .
C 7.如图,在ABC中,点D在AB上,ACB70,现将 E ABC的B折过去,使顶点B落在点E处,CD为折痕,
且AC交ED于点F,若ECA20,则ACD的度 数为 . 三、解答题
8.已知:ABAC,BE、CD交于点P,且BDEC, 求证:PDPE.
B A F D B (第7题)
A D P C
(第8题)
E
9.如图,已知:CACB,ADBD,M、N分别是CA、CB中点,求证:DMDN
C
(提示:连接CD).
M N A D (第9题)
B 10.如图,已知:ABBC,ACDC,12,ACED.求证:ABEC.
----完整版学习资料分享----
D (第10题)
A B
E F
12C 资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
11.已知:ABC,画出DEF,使DEF≌ABC.(要求:用直尺和圆规来完成图 形,保留作图痕迹).
B (第11题)
A C
§11.3 角的平分线的性质(1)
一、选择题
1.下列说法中错误的是( ).
A.到已知角的两边距离相等的点与角的顶点的连线平分已知角
B.已知角内有两点,各自到角的两边的距离相等,则经过这两点的连线平分已知角 C.不在角平分线上的点到这个角的两边的距离不相等 D.到角的两边距离相等的点有可能不在这个角的平分线上 2.如图,PAOM于点A,PBON于点B,下列条件: ①OP平分MON;②OPAOPB;③OAOB. 能证明AOP≌BOP的是( ).
A.只有①② B.只有①③
C.只有②③ D.①②③
3.如图,已知:AP、CP分别是ABC的外角DAC、ECA
B 的平分线,PMBD,PNBE,垂足分别为M、N. 那么PM、PN的关系为( ).
A.PM>PN B.PMPN C.PM<PN D.无法确定
C A M D
P C N E B O (第4题)
A O M P B N
(第2题)
(第3题)
A 4.如图,ABC的三边AB、BC、CA分别是20、30、40,其三条角平分线相交于点O,则SABO:
SBCO:SCAO的值为( ).
A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5 二、填空题
5.如图,如果ABC≌AED,则相等的边是
E A ,则相等的角是 . C ----完整版学习资料分享----
B D (第5题)
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
6.如图,AB∥CD,BO平分ABD,DO平分BDC,则点
O到AB的距离一定等于点O到 的距离,又等于点
O到 的距离.
7.如图,在RtABC中,C90,BD 是ABC的角平分线,交AC于点D, 若CD2,AB10,则ABD的面积 是 . 三、解答题
C A A O
D B (第6题)
B
D C
(第7题)
8.如图,在ABC中,AD是BAC的角平分线,且CDBD,DE、DF分别垂直于AB、AC,垂足为E、F,求证:BDECDF
9.如图,在ABC中,AD、AE分别是ABC的高和角平分线,若B30,
(1)DAE的度数,(2)试写出DAE与CB有何关系,证明你的结论. C50,求:
10.求证:全等三角形的对应角的平分线相等(要求:自己画图,写出已知、求证及证明过程).
----完整版学习资料分享----
B E D (第9题)
A E B D (第8题)
F
C
A C 资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
§11.3 角的平分线的性质(2)
一、选择题
1.如图,已知:FDAM于D,FEBM于E,下列条件: ①MF是AMB的角平分线.②DFEF.③DMEM. ④MFDMFE.其中,能证明DMF≌EMF的 个数是( ).
A.1个 B.2个 C.3个 D.4个
2.下列条件不能唯一作出三角形的是( ).
A.已知三边 B.两边及其夹角 C.两边及其一边的对角 D.已知两角及其夹边 3.如图,已知:12,CD,AC、BD相交于点E,
D
下列结论不正确的是( ).
A.DABCBA B.ABC≌BAD
C.CEDE D.ABAC 4.到三角形三边距离相等的点是( ).
A.三条角平分线的交点 B.三条中线的交点
C.三条高的交点 D.以上答案都不对 二、填空题
5.如图,已知:ABC≌DEF,若DE6,AE2.则BE .
D
B A C A E B E F
B C (第5题)
A D F E (第1题)
M B
C
E A 12B (第3题)
C D (第6题)
A A (第7题)
D B D (第8题)
C 6.如图,在ABC中,C90,BD平分ABC,DEAB于E,若BCD与BCA的面积之比为2:5,则ADE与BCA的面积之比为 .
7.如图,BCAC于C,BDAD于D,请你写出适当的条件 使BCBD.
8.如图,AD是ABC的一条中线,AB8cm,AC5cm,则AD的范围是 . 三、解答题
9.如图,已知:BCDA,AECF,BEAC于E,DFAC于F. 求证:ABCD.
----完整版学习资料分享---- B A E F C D (第9题)
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
10.如图,在ABC中,ACB90,BD平分ABC,交AC于D,EDAB 于D,交BCA 延长线于F,求证:DADF.
E
11.如图,点A、E、F、C在同一条直线上,现有下面四个论断:(1)ADCB,(2)BD,(3)AECF,(4)AD∥BC.请你用其中的三个作为条件, 余下的作为结论,编写一道数学问题,并写出答案.
B A E F C (第11题)
D B C (第10题)
F
D
----完整版学习资料分享----
因篇幅问题不能全部显示,请点此查看更多更全内容