发布网友 发布时间:1小时前
共4个回答
热心网友 时间:2分钟前
解:连接DB
∵AD=BC DC=AB
DB=DB(公共边)
∴△ADB全等于△CBD(SSS)
∴∠A=∠C
又∵DE=BF
∴AD+DE=BF+CB
∴AE=CF
∵∠A=∠C AB=DC
∴△EAB全等于△FCD(SAS)
∴∠E=∠F
有问题还可以问我 求采纳 打字不容易
热心网友 时间:5分钟前
证明:
∵AD=BC,AB=DC
∴四边形ABCD是平行四边形
∴∠A=∠C
∵DE=BF
∴DE+AD=BF+CB
∴EA=FC
又AB=CD
∴ΔCDF≌ΔABE (SAS)
∴∠E=∠F
热心网友 时间:5分钟前
∵AD=BC,AB=DC
∴ABCD是平行四边形
∴AD∥BC
即DE∥BF
∵DE=BF
∴DEBF是平行四边形
∴∠E=∠F
热心网友 时间:4分钟前
∵AD=BC,AB=DC
∴四边形ABCD是平行四边形
∴AD∥BC
即DE∥BF
∵DE=BF
∴四边形BEDF是平行四边形
∴∠E=∠F(平行四边形的对角相等)